Bl Ref. Ares(2022)3031404 - 14/04/2022

Grant Agreement Number: 957204 (H2020-ICT-38-2020)

Project Acronym: MAS4AI

Project Start Date: 15t October 2020

Project Full Title: Multi-Agent Systems for Pervasive Artificial Intelligence for assisting

Humans in Modular Production

__MASA4ALI*

D2.1 - User Manuals on Accessing and Using the MAS

Dissemination level: PU

Date: 2022-04-14

Deliverable leader: DFKI

Contributors: DFKI

Reviewers: AIMEN

Type: R

WP / Task responsible: DFKI

Keywords: Keywords: Janus SARL Multi-Agent System, BaSyx-Middleware,
Asset Administration Shell, Kafka, Deployment of Al agents

Page | 1

Dissemination level: PU...



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

Executive Summary

This document comprises the deliverable D2.1 that describes the setup on the Multi-Agent
System based on the Janus SARL runtime as MAS, BaSyx as a middleware for hosting AASs and
Kafka as an event strimming middleware. The goal is to separate the agent internal technologies
from the agent framework in order enable separate development of Al components which will
be efficiently deployed in the MAS. The system will provide the technology for the subsequent
integration of various kinds of agents from the work packages WP2 — WPS5.

First, the general concepts of the Janus SARL MAS as well as its setup are described. Second,
an overview, installation steps and setup of the BaSyx-Middleware, for example for AAS usage,
are given. After that, the Kafka middleware installation and setup steps as well as code snippets
for creating simple publisher/subscriber are presented. Different possibilities for integrating of
agents’ programs into the MAS framework are show. In the end the setup of knowledge-based
interactions inside the MAS4AIl framework is discussed.

Document History

Version Date Contributors Description

Vo1 2022-01-18 DFKI Initial Version of the
document

V02 2022-03-30 DFKI Version for  the
review

V03 2022-04-11 DFKI Final Version

Page | 2

Dissemination level: PU



O%l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

Table of Contents

EXECUTIVE SUMIMIAIY ...ttt ssssssssssssssssnsnnnnns 2
LI L o1 [Sl oY T (T LSS 5
1 INErOQUCTION e era e s 7
2 MASAAI frameWOIK OVEIVIEW ... ..ceiiuiiiiiiiieiiie ettt ettt ettt e et e sbe e e sabe e s san e s nt e seneeesneees 8
T |V 1Y =L U o OO PP P RO OPPRPPUPPR 13
3.1 Janus SARL MAS Setup and Installation ..o ieeciiiiiee e 13
3.2 Setup Of SARL ElEMENTS ..cciiiiiiie ettt e s srre e e e s abee e e e earaeaeenns 16
33 Setup Application on MASAAI @XaMPIE ....cceeviiieiiiiiiee s 19

4 AAS BaSY K-S0 UP cuuuieiiiiiiiiiiiiie ettt e e et e et e e e e et eaa b aeeeeee et aebraeeeeeaaaeens 23
4.1 Overview of BaSyx-Middleware Elements.........ccccccueeeeiiiiie e 23
4.2 BaSyx-Installation and setup of related concepts .......ccovvevviiiiiiciciiee e, 26
4.3 Setup of AAS with AASX Files for Agent Service Descriptions.......ccccceeeeevveeeeeciveeeenne 30
4.4 Data ColleCtion SEIVICES. ....cccuuiiiiiiiiiiiecee e e s 33

I (€ |1 T =] 1 o PSR PPPRSPPPR 35
5.1 Kafka main concepts and terminology in relation to agents........cccovcveeeeeeeeicccnrveeenn.n. 36
5.2 Kafka setup for MAS FramewWork. .......ooo i 37
5.2.1  Creating Kafka ProdUCET .......veeeeiiii ittt e et e e e e e e 43
5.2.2 Serializing messages Using APAChe AVIO........coovcciivireeieee e e e eeeirereee e e e eenans 44
5.2.3  Creating Kafka CONSUMEN ......oeieiiiiieeeee ettt e e et e e e e e 45

6 Setup for Integration and deployment of Agent TYPES.....cocccriiieeeieiieccceeee e, 47
6.1 Integration of Cyber-Physical Production Modules into Resource Agents .................. 47
6.2 Integration and deployment of Al AZENTS .....ovviieiiii i 49
6.3 Agent’s Program as an exterNal SErVICE ... iciiiiieie e 50
6.4 Agent’s Program as an internal Agent’s sKill .......cccovuvveeieeiiiiiiiiiiieee e 50

7 Setup of Knowledge-Based Interactions inside MAS4Al framework .........cccovvvveeeeeeeeiecnnnnnee. 51
8 CONCIUSION ettt ettt e st e e st e e et e e s ab e e s enb e e s enbeesneeesneeeeas 54
O LITEIratUIE e e 56
Page | 3

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

10 FAY oY o= o o 1 PSPPSR 59

Page | 4

Dissemination level: PU



O%‘ D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

Table of Figures

FIGURE 1: INITIAL MAS4AI APPROACH WITH WORK PACKAGE RELATION ....uuuvvvreeeeeeesuerrrreeseeesssrsnseesessssssssseesesssnsssssnssesssensssssenees 8
FIGURE 2: PROPOSED MAS4AI| FRAMEWORK ELEMENTS
FIGURE 3: HOLONIC APPROACH OF IMASAAL....ceeeiiieiiieiteee e e e ettt e e e ee sttt e e e e e e s e s ataae e e e e s e sessaataeeeeeesasssesaeeeeeseassnnssnseesssessnnnes
FIGURE 4: MAS4AI FRAMEWORK ELEMENTS INSIDE OF AN HOLONIC AGENT ...uuvtiiieeeeeiiiirueeeeeeeeeesunseeeeeeseessnsseesesseesanssssssesssessnnnns 11
FIGURE 5: JANUS SARL PACKAGE
FIGURE 6: CONVERSION JANUS SARL-PROJECT INTO SARL MAVEN-PROJECT .eeiiiiieiiieieeeee e, 14
FIGURE 7: JANUS SARL LAUNCH CONFIGURATION .....uuuttrieeeeeeieiiuureeeeeeeeeainssseseeessesaassssseesesssasssssssssssssasssssssssesssesanssssseesssennnnns 15
FIGURE 8: JANUS SARL METAMODEL, FROM [9]
FIGURE 9: SARL OBJECTS .cceeeeeevvireeeeeeesivnnens
FIGURE 10: HOLONIC AGENT WITH INITIAL SPAWN PROCEDURE
FIGURE 11: SKILL IMPLEMENTATION INSIDE BEHAVIOUR OF AN ASSEMBLY AGENT .eeeeiiiiutrrreeeeeeiiiurnnreeeeessesnnsreesesssssssssnssesssesnannns 20
FIGURE 12: EXAMPLE CAPACITY OBJECT FOR AAS-RELATED SUBMODEL METHODS OF AN ASSEMBLY MODULE .....ccceeeeieiiuviireeeeeeennnnns 21
FIGURE 13: COMMUNICATION PATTERN INSIDE THE SKILL +vvveeeeeieiiuureeeeeeeeesisreeeeeeeeesaasssseeseessesssssseseesssasssssssssessensanssssssesseesnnnnns 21
FIGURE 14: BASYX-COMPONENTS ACCORDING TO [10], EXTENDED WITH AGENT-BASED COMPONENT ...eeeeeeieeirrreeeeeeeesnnreeeeeeeeenennnns 24
FIGURE 15: PLATFORM 14.0 COMPLIANT AND ADDITIONAL BASYS-COMPONENTS, ACCORDING TO [11] .eeveeiiiiiiiieieeeeecireeeeee e 25
FIGURE 16: BASYX IMPLEMENTATIONS, ACCORDING TO [12] ..eiiieiiriiiieeeeeecinreeeeeeeeeeinreeeeeeeeeennnns

FIGURE 17: BASYS JAVA SDK PROJECTS AND DEPENDENCIES, ACCORDING TO [13]
FIGURE 18: BASYS JAVA SDK WITH CONTENT OF BASYS.SDK .ieieuvvirreieeeieiiertreeeseseiistrereesesssssssssseesesssssssssessesssnssssssssesssessnnnns
FIGURE 19: BASYS JAVA SDK WITH CONTENT OF BASYS.COMPONENTS ...ccccuuvvirreeeeeeeiiuerrrreeseseisssnsnseesessssssssnnesesssessnssssseesssessnnnns
FIGURE 20: BASYS JAVA SDK WITH CONTENT OF BASYS.EXAMPLES ...vveeeeeieiuerrreeeseseiisrsereesessisssssnessessssssssssessessssssnssssseesssensannns
FIGURE 21: AAS MODEL FOR RESOURCE AGENT ..eieiiiuttirreeeeeeseiusrreeeesssesnsssseeesssassnssssssessssssnssssssssssssssssssssssesssnssnssssssesssessannns
FIGURE 22: INTEGRATION OF AASX FILES INTO THE BASYX PROJECT 1evvieeeieiuurieeeeeeeeiitrreeeeeeeeseinusseeeeeeesesnssessseeseesssssssseesesenannnns
FIGURE 23: PARSING AND HOSTING THE AASX MODEL INSIDE BASYX
FIGURE 24: PROGRAM PART TO START AAS SERVER AND REGISTRY ...eetieiiirruuriieresesassureneeesessssssunsseesesssssunsseesesssssssssssseessssssnnnns
FIGURE 25: REGISTRY EXAMPLE WITH REGISTERED AAS OF RESOURCE AGENT ...uiieiittiuieseeeeerrunnneseseeernnnnaesesessnnsnnnesesersmnnnnnaeseaes
FIGURE 26: AAS SERVER OF THE RESOURCE AGENT ..eieiiieiiieieieieiiieieieieieieteeeee e e teteeeeeaeaeaeaeaaaaaaaeaeeaaaeaaaaaeaaaaaaeeaaeaaaaaaaaaaaaaaaaaaaeens
FIGURE 27: BASYX-MIDDLEWARE = SQL INTEGRATION ...ciiiiieiiiiiiieiiieieieieeeeeieee et et eeeee e et e aeee e e e e s e e e s e ea e e e e ae e e e e e e e e e e e e aaaaaeaesaaaeaaaaaaaens
FIGURE 28: BASYX-MIDDLEWARE - AAS DATA COLLECTION WITH SQL ooiiiiieieeeceeee e,
FIGURE 29: BASYX-MIDDLEWARE: SETUP OF DATA COLLECTION SERVICES ..iiieieiiiiiiiiieiiiiiiieieieeeeeee et e ee e eseeae e e e e e e e e aaaaaaaaaa s
FIGURE 30: RELATIONSHIP BETWEEN THE EVENT’S PRODUCER, CONSUMER AND THE TOPIC, ACCORDING TO [21] wvvvvviviiiiiiriieieeceeianns 36
FIGURE 31: TWO MAS RUNTIMES COMMUNICATES THROUGH KAFKA ....ceeiiiiiiieieeeeeitiieee e e e etetaiseeeseeesaannneeesessnnsnnaeseeensnnnnnnaesenes 38
FIGURE 32: KAFKA ZOOKEEPER, FROM [23] ..uttvtieeeieiiiitreeeeeeeieiitreeeeeeesesissaeeeeeeeesasssssessesssassssssssseessessssssssseessessssssssssessennnnns
FIGURE 33: DOCKERFILE FOR INSTALLING KAFKA...ciiitiuttiiieeeeeeieiiitteeeesssesiatteeeesesesasssaseeesssssssssssseesessssssssseeesesssnsssssssseessssnsnnns
FIGURE 34: DOCKERFILE FOR INSTALLING ZOOKEEPER ... uvvtteteesseuurreeeeessssssnreneeesssensssseseeessssssssmssseesssssssmssssesesssnssnssesseessssnssnnns
FIGURE 35: AN EXAMPLE OF THE DOCKER-COMPOSE FILE .eeieeeeeieiieeieieieieieieieieeeieseieeeseeeteseaeeeaeseteseseeeeeseseeesesesesesasssesesesssesseenees
FIGURE 36: KAFKA PRODUCER COMPONENTS, FROM [23] o iiiiiiiiiiiiiiiiiiieieeecceeeeeeeeteee ettt ettt ettt ettt ettt ettt e e et e e e e e e e e e e e e e e e e e e eeeas
FIGURE 37: SIMPLE PRODUCER WITH THE DEFAULT SETTINGS
FIGURE 38: SIMPLEST WAY TO SEND A MESSAGE TO KAFKA ....ciiiii i
FIGURE 39: SIMPLIFIED EXAMPLE OF AVRO SCHEMA ....ciiiiieieieieeeeeteeeeeee e et e e et e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaaaaaaaaaaans
FIGURE 40: SERIALIZATION AND DESERIALIZATION OF AVRO MESSAGES, FROM [23] ..eiiiviieieiiiieeeiteeesiteeeesetee e sseeneeesnveeessneeeessnnees 45
FIGURE 41: SIMPLE KAFKA CONSUMER.....cuutttrtteseeeieuturteesesssassnseeesesssasossssnesessssssssseseeesssssssssssseesesssnsssssnesesssnsssssssseesssensnnnns 46
FIGURE 42: BASYX EXAMPLE SETUP OF SMART FACTORY TESTBED ...vvvvtteeeeesuurrreeeesesssssreneeesesssssssnseeesessssssssseesesssnssssssseessssnsnnnes 47

Dissemination level: PU



O D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

FIGURE 43: SETUP AND USAGE OF BASYX-AAS SERVER AND REGISTRY FOR CPPM ....coiiiiiiiieieee e 48
FIGURE 44 INTEGRATING AND DEPLOYING DIFFERENT AGENTS AND THEIR PROGRAMS ...49
FIGURE 45: MAS INTERACTION MODEL WITH FRAMEWORK ELEMENTS DURING START OF AN HOLONIC AGENT ....ueuerveererenannnreneeenennnns 51
FIGURE 46: MAS INTERACTION MODEL WITH FRAMEWORK ELEMENTS FOR AGENT REQUEST EVENT PROCESSING ...ccevvveverererererererenenens 53
FIGURE 47: MASAAI ELEMENTS INTERACTION DIAGRAM ...ceeeiiireeeereeeeeeeeeeeeeeeeeeeeeeeeessesesesesssesssesesssesssesssesessseseresesesesereserermreren 59

Page | 6

Dissemination level: PU



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

1 Introduction

The main objective of this document is to describe the setup of the MAS4AI framework,
which is based on the holonic Multi Agent System (MAS) framework Janus and the message-
based middleware solutions of BaSyx and Apache Kafka, providing a system for integration of
various kinds of software agents from other MAS4AIl work packages. The integration of Cyber-
Physical Production Modules (CPPM) with resource agents as well as for Industrial Al software
agents are modelled and described. The integration of several technologies inside of an agent
thus will be enabled by a related interface description as provided by the Asset Administration
Shell (AAS) and the Janus skill pattern, for template-based concept with the SARL-language for
separation of implemented functionalities without changing the agents itself. The implemented
framework setup follows the approach, to integrate available microservices of production
environments which can be connected to agent types.

The MAS4AIl framework in general follows a modular approach, which is independent of the
selected technological implementation. Nevertheless, the reference setup of the framework
elements is provided with related MAS frameworks as well as middleware solutions, but the main
scope is to enable an approach to provide integration possibilities for several technologies, if they
can implement the concepts of this framework. The framework related system elements, like the
used MAS, can be deployed as own Docker environments and the related open-source
framework parts like BaSyx also provides encapsulated functions like registry or AAS server
functions inside of predefined and deployed docker containers.

The specification and integration of information models and interfaces for agents in the
framework thus follows this general approach, which is provided and integrated in the MAS4AlI
framework by using the AAS for agent usage. The usage of the AAS as well as registration and
discovery, which is needed in the MAS4AI framework, thus follows the concept of assets with
virtualized representation with the AAS.

The sequence model how (holonic) agents can interact with the information models of
agents and assets as well the integration of the knowledge base for agent interactions are
described. The integration of the knowledge base as well as the usage of stored data can also be
integrated with the same microservice integration to the agent system.

Page | 7

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

2 MAS4AI framework overview

The initial MAS4AI framework of the proposal considers an approach of several components,
which are related to several work packages of the project. Inside this document, the setup of the
related components is described, as well as approaches for interface setup towards several
agents.

’ b I

i )
' [HMLAL | Al-A1 | ' Cloud-A1
! [T[HMI-Aj Al-Ak ; F—aeod | Production
' ! Planning and
! 1 Connector
5 HMI Agent Al Agent 5 Adguit Control Level
: ; ASD
e L2 http, MQTT, AMPQ
YTWP3 : i
¥ Agent  |![ agent A-Discovery Message- i
'+ | Configuration || Repgsitory Colljlzztaion Based Gateway i
i ' | &Execution | A-Registry Middleware i
N 2 :
:\ Multi-Agent System ,:
g [ ST i I OPC-UA PubSub
f[mMeAL [ [ MaAz | I g
¢ = Az wnkz 1 Modue/Physca
. Module ' Y 1 Process Level
| Wteract - Module "
: nteraction : Module Agent :
: Agent ! Agent L
; ASD ¥ ASD ;
' 'y ASD '
\ i / ASD: Agent Service Description

Figure 1: Initial MAS4AI approach with work package relation

The MAS4AI framework consists of several system elements to interact with a manufacturing
environment. The setup for these elements and their integration will be described in the scope
of this document with a related implementation reference. It is important to note, that for each
framework elements also alternative solutions could be used and integrated, if they can follow
the requirements of the MAS4Al setup and communication interfaces. The following elements
are presented in Figure 2.

Page | 8

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

__ Container
Data / AAS
Layer
(BaSyx)

MAS System
(Janus)

Knowledge f Messaging fug Manufacturing

Base (RDF) System | Environment
(Kafka)

Interface

MAS4AI
. Framework

Figure 2: Proposed MAS4AI Framework elements

The MAS4AI framework elements enables a distributed setup, in which each of these

elements could also be deployed with different solutions on cloud or edge-side. The general role
of these framework elements is described in this document as follows:

MAS System component

The MAS system components consist of a MAS framework which support the structure
of holonic agents and adaptable software patterns. In scope of the presented approach,
the Janus SARL framework has been evaluated due to the possibility to use the agent-
oriented programming language SARL. Furthermore, it is possible to use other MAS, if
they can provide similar agent patterns, for example JADE. It must be possible to host
many instances of the MAS in a distributed environment (or also many different MAS, if
they communicate by using standardized interfaces with the agents AAS).

Data / AAS Layer

The Data / AAS Layer is used in the framework for the virtual representation of the
manufacturing environment and responsible for the setup of the AAS for physical and
software assets as well as for the agents itself, representing the functionality of the

Page | 9

Dissemination level: PU



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

agent service description. The Data / AAS environment also consist of functionalities to
register and discover available AAS. Several parts of this element could be distributed as
well as the MAS System element of the framework. In the scope of the MAS4AI system
setup, the BaSyx-Middleware is prepared with the related components of AAS hosting
asset integration and data storage.

Knowledge Base

The knowledge base stores information about the system configuration and about
the manufacturing information in a semantic way. This also is of interest of the interface
setup for the AAS for assets and agents and extends the possibilities for discovering and
reasoning in the system. In the MAS4Al framework, the integration of an RDF-Store with
Dydra as knowledge base is used.

Messaging System

The messaging system acts as common communication channel for MAS agents in a
distributed environment. In the framework setup, for this element Apache Kafka is
explored. The integration of Kafka furthermore enables the possibility to collect data from
the Data / AAS Layer, which for example could be used for machine learning Al agents.
For agents inside a holonic agent it is also possible to use the communication mechanisms
of such a MAS framework, for example Janus.

User Interface

The user interface allows to participate with the general framework setup and allows the
interaction and monitoring during runtime. The interface therefore should also consider
tools for support of the MAS framework configuration.

The proposed method of MAS4AI to build up the framework thus contains the introduced
framework elements and the necessity to build up the Data / AAS layer and to combine them
with the predefined agent patterns by using the integrated existing manufacturing environment
with the AAS as common interface. Nevertheless, the setup and the related configuration and
integration of system elements like the Messaging System and the Knowledge Base takes place
during this process, building up the complete MAS4AIl framework.

o o0 T o

Digital twin preparation and integration with the Al agents for early assessment,
pilot setup that involves integration of existing legacy systems,

execution and validation of the individual agents and

execution and validation with the whole MAS4AI system

Page | 10

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

Based on the holonic agent concept of the MAS4AI architecture with static and dynamic
holons, the elements interact from a holonic agent point of view with the framework elements

in a predefined way.

Factory

— ]

Station Station

~mman-

Cma- Camn~Cama>

Figure 3: Holonic Approach of MAS4AI

Figure 4 describes the integration possibilities of the introduced MAS4AIl framework elements
inside of an holonic agent.

Distributed holanic
MAS-Configuration,
deployment and
parametrization

Agent Architecture Patterns (e.g. Types)
|evaluated in lade [ lanus SARL)

. ] Prawiding common asset interfaces with
n AXS by vaing middleware and protocols
[evaluated with BaSys / OPC UA)

Agent Interaction Language and
message interfaces
(evaluated with Apache Kafka)

Figure 4: MAS4AI framework elements inside of an holonic agent

Dissemination level: PU

Page | 11



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

A holonic agent in this point of view is an agent, which can be deployed in a MAS framework
like Janus and could be described with an AAS that, for example, is provided by using the BaSyx-
Middleware. The AAS stores information about the interface of this holonic agent, considering
input and output parameters, and can be used to setup the related agent types of this holonic
agent. These agent types could be deployed in a MAS like the Janus framework and initialize their
own AAS as interface description, but it is also possible to use different MAS.

The search of suitable (holonic) agents in this context could be done by using the BaSyx-
Middleware and the knowledge base, which stores semantic information with relation to the
agents AAS. In case of a distributed agents or usage of different MAS inside a holonic agent, the
communication must be enabled by using a common message channel like Apache Kafka. If a
communication with the manufacturing environment is necessary, the agents must access the
AAS layer of related assets like physical machines or software components.

Page | 12

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204
3 MAS-Setup

3.1 Janus SARL MAS Setup and Installation

For the MAS setup the Janus SARL environment [1] has been proposed in the MAS4Al project.
Due to the requirements, it is also possible to use other, suitable MAS frameworks or MAS related
software concepts if they can follow the concepts of MAS4AI.

The setup of the Janus framework is described with own tutorials for installation [2] and
guidelines for holonic agent deployment of the MAS4AI Janus demonstration project package,
which is based on the generalized Smart Factory testbed implementation. It is very important,
that the used SARL Development Environment Version is used with the recommended Java
Runtime Environment to avoid installation problems. The Janus SARL Version 0.12.0 (stable)
should be implemented with a Java Runtime Environment 8. The Janus MAS framework setup
has been tested with a free pre-built JRE from Adoptium [3] (former Open)JDK) and used to setup
the basics for the Janus setup.

The MAS development and configuration environment of Janus SARL can be started by using
the prebuilt “eclipse-sarl” application. The environment comes also with a Janus command line
launcher [4] and Maven plugin for the SARL compiler [5], to generate executable Java Jar-Files
based on the domain-specific modelling of SARL.

W eclipsec.exe
@' eclipse-sarl.exe
.| eclipse-sarl.ini
4 janus.exe

& launcher.exe

@' arlc.exe

@' sarldoc.exe

Figure 5: Janus SARL Package !

It is recommended to use the pre-configured Eclipse with SARL SDK to work and develop with
the predefined environment. The setup of Maven should also be set for Janus projects inside of
the SARL IDE.

1 Janus SARL components for agent development

Page | 13

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

@ workspace - SARL IDE
File Edit Navigate Search Project Run SARL Window Help

M- LR -0 - Q- BO-i®F-if-F LoD

[£ SARL Explorer [ Be § =0
v A MASAr 21
m New »
v S sre)
- m | Go Into
@ Openin New Window
i Open Type Hierarchy
i Show In Alt+Shift+Ww »
¢ & copy Ctri+C
# 55 Copy Qualified Name
4T paste Ctri+v
£ 3 Delete Delete
a
T Build Path >
v Source Alt+Shift+5 >
¢ Refactor Alt+Shift+T >
im Import...
(uﬁ, Export...
¢ g§* Refresh FS
v # Close Project
< Close Unrelated Projects
¢ Assign Working Sets...
CQ Runas >
¢ # Debug As 5
¥ : Team »
Compare With »
< Restore from Local History...
¢ Maven >
¢ Configure > Unconfigure Xtext
(V] validate Remove SARL Nature
Bsc/ properties Alt+Enter Convert to SARL Maven Project
(™ sre/main/resources _ Create module-info java
8 src/test/sarl

v @ src/main/generated-sources/sarl
Figure 6: Conversion Janus SARL-Project into SARL Maven-Project 2

To enable the possibility of a Maven project deployment, the project POM-File must be
upgraded with dependencies with are described for actual versions in the Janus SARL installer
environment [6], to work with the Maven Build Process.

If a project with related agents is available, the environment can be started with a SARL or
Java Launch Configuration [7]. If the project is started, it is possible to use the setup holonic agent
for booting purpose.

2 SARL IDE (Setup as Maven Project)

Page | 14

Dissemination level: PU



MAS4A|*

® workspace - SARL IDE
Eil

[ SARL Explorer
v I MAS4AI
v §® sre/mainy/sarl

v j# agents
@ Assembly.sarl
@ DataStorage sarl
® HolonicAgent sarl
B Maintainer.sarl
P Quality1 sarl
P Quality2 sarl
1O TakeoutPlace sarl
1D Transport sarl

v 8 capacities
® AssemblyCapacity.sarl
® DataStorageCapacity.sarl
® pickAndPlaceCapacity.sarl
® QualityCapacity.sarl
© TransportCapacity.sarl

v i events
© GeneralBehavior.sarl
® Maintenance sarl
® Module sarl
® Transport.sarl

v 8 skills
© Assemblyskill sarl
® DataStorageskill sarl
© PickAndPlaceskil sarl
® Qualityskill sarl
® TransportSkillsarl

(8 sre/main/java

(P sre/main/resources

B srctest/sar

v G src/main/generated-sources/sarl
> {8 agents

t Navigate Search Project Run SARL Window

Help

J;A,: -0 Q-WEG-I®Y-:iL-F
ES §~

-G - -t

D2.1 — User Manuals on Accessing and Using the MAS

H2020 Contract No. 957204

(®) Run Configurations

Create, and run

Run a SARL agent in running or debugging mode.

BpeExXBY -
type filter text

¥ Java
E Java Application
Ju Junit
8 Launch Group
v m2 Maven Build
m2 janussarl
m2 janussarl (1)
m2 janussarl (2)
v (©) sARL Agent
@ Agent 'Hello world’
() Basic behavior demo

New_configuration

@ Ping-Pong in specific space
PingAgent
SecondAgent

v "§!sARL Application

"% JavaFX template application

"% Reynolds Boids - AWT

"% sierpinski fractals

Filter matched 21 of 24 items

Name: ' HolonicAgent (MAQAI)
Qulin (9= Arg
Project:
MAS4AI

‘39 cl

B\ Runtime

Agent qualified name:
igenls,Holom(Aqenﬂ

Identifier for the root context

(@ Default identifier predefined in the SRE (--boot-tyg

(O Random identifier (--boot-type=random)

() Identifier computed from the boot agent type (--b:

Launch Options

[/ Show the logged information messages (--log=info othen
Disconnect the SRE from the network (-~ otherwise --)

[_]Enable assertions in run mode

[/ Enable assertions in debug mode

["JRun in the SARL product VM (experimental)

Figure 7: Janus SARL Launch Configuration 3

The launch of agents can be processed by using a given Java or SARL launch configuration.
The SARL launch configuration need the Janus command line tool from the framework, which can
start and control several agents in the environment. The Java launch configuration just enables
an execution of an holonic agent by using the default Java runtime environment and it is possible
to interact with it with several input arguments during the booting procedure.

3 SARL IDE (Janus Launch Configuration)

Dissemination level: PU

Page | 15



O%‘ D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

3.2 Setup of SARL elements

SARL is an agent-oriented programming language where the SARL metamodel consists of
several elements, which are based on the following four main concepts [8] and presented in
Figure 8:

e Agent
e Capacity
e Space
o Skill
TOH* member of B> \I/ 1.#%
Agent - context | context Space e SpaceSpecification
allels LU 1 E 1.* i Szigﬂlc;‘;iﬁ‘(? Ser<UUIDs 1 + create(id : SpacelD, params : Object[]) . Space
0% 1.# 7 AN

member of P>
0.* | - skils ]

<<extension= >

Skill —dri
4[>! Capacity | Eventspace Event-driven

+ install(} : void HH EventSpaceSpecification

+ uninstall() : wvoid + emit{e : Event, s : Scope) : vaoid
+emit(e : Bvent) : void + create(id : SpacelD, params : Object EventSpace
+ getAddress(id : UUID) : Address tid  Spacell), p - Spjectl): p

1. % 1.%
Action Action Specification A
Event <<extj'r:1ilsslon>>

- source : Object openEventSpace

+ register(e : Bventlistener) : void

<<interfaces> + unregister{e : Eventlistener) : void

Scope

+ matches({elerment : T) : boolean

Figure 8: Janus SARL metamodel, from [9]

An agent in the framework can join several communication spaces, which can be specified for
an event-based communication. Furthermore, an agent implements skills, which are described
as abstract interfaces in terms of capacities. Related to the Janus SARL environment, more
objects can be predefined by using the agent-based programming language as be build up as
templates.

Page | 16

Dissemination level: PU



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

@ workspace - SARL IDE
File Edit Navigate Search Project Run SARL Window Help

H-HR#% -0-%-HG-i®F-i -5 -0
[£ sARL Explorer BS § - O
v § MAS4Al 1
=g .
v 5 src e > 5 SARL Project
. ﬂ Go Into l_i; ijeﬂm
i g:: 'Tr;:::i::::cd:; & SARL File
i A,
4
( Showin Alt+Shift+W > @ SARL Agent
EE Copy CtreC :; SARL Behaw_or
{52 copy Qualified Name ot SARL Capacity
4T paste Ctrl+v & e E‘"_?m
498 pelete . SARL Skill
 — , @ sARLClass
uil "al
~ E<' o Alt+ShiftsS > 6"‘ SARL Interface
¢ Refactor Alt+ShiftsT * @ SARL Enumeration
“}; Import... @> SARL Annotation
(ﬁ Export... g Enum
Package
(@ Refresh F5
v B Close Project &9 source Folder
{ Clese Unrelated Projects fj; Folder
( Assign Working Sets... LY File
{Q Runas » 2 Untitled Text File
B;# Debug As > 9 Example...
¢ e ) ’ 5 Other.. Ctri+N
Compare With >
¢ Restore from Local History...
( Maven »
( Configure »
(M validate
Bstci properties Alt+Enter
ESTCHHGIII!I::UU[LE:
BB srctestysanl
~ G src/main/generated-sources/sarl
> 4 agents

Figure 9: SARL Objects *

For the MAS4AI system setup, the related SARL elements of the framework environment can
be considered. In the MAS4AI system setup, the usage of these elements for a MAS setup has
been validated on the SmartFactory demonstration testbed, considering a template-specific
build-up of these elements in a reusable manner. The concept of capabilities and skills thus are
used, to build up re-useable agent patterns, which are exchangeable and furthermore adaptable
in a respective implementation.

The communication aspects to let the MAS interact with the MAS4AI data / AAS layer, are
also setup and encapsulated in the respective skills. This allows to define the agent’s behaviour
in the MAS4AI environment with similar patterns, regardless the communication aspects of an
asset. It is also possible to use the skills to interact with an AAS or an Al agent. In Table 1, all used
and evaluated Janus Objects are described. In the next section, an implementation example,
related to the Smart Factory testbed environment is presented.

4 SARL IDE (SARL Objects)

Page | 17

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

Janus Object Creatable Object MAS4AI-Setup

Agent X Agent patterns that are defined on basis of the defined
requirements. It is possible to define agents for
resources as templates and to extend them with the
concept of object-oriented inheritance. This allows to
provide re-useable SARL templates.

Behaviour X The behaviour which has been initialized on each agent
can be defined for agents and implements one or many
skills, that uses capacities.

Capacity X A capacity consists of one or many actions and is used as
abstract description for an implementation in skills. A
capacity could be for example “Transport” for a resource
agent. The concept of capacities allows to setup several
and re-useable capabilities of agent patterns, without
definition of implementation-relevant details.

Skill X A skill implements a capacity and can be used in agents
in related behaviours and is used as concept in the
MAS4AI framework to communicate with physical or Al
agents. Therefore, the skill implements related functions
to communicate for example with OPC UA or HTTP REST
and to interact with corresponding Asset Administration
Shells. It is possible, that agents can implement one or
many skills. The concept of the skills enables the
possibility to exchange or modify implementations by
using own or adapted skills without changing the agent’s
behaviour or the template agent itself.

Events X Events are defined in own patterns which are useable for
agent-related communication in a distributed framework
but also for the communication inside of an agent if an
internal behaviour should be started or changed.

Space Default communication mechanism if all related agents
are deployed in one Janus Framework environment. The
possibility to integrate Kafka as communication channel
can be implemented and configured in the related AAS

of the given agents.
Table 1: Janus Objects for agent modelling and setup

Page | 18

Dissemination level: PU



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

3.3 Setup Application on MAS4AI example
In this section, various examples of the Janus system setup will be shown and how a
framework like Janus can be used to fulfil the required MAS4Al concepts.

L orer il — ' ] onicAgent.sarl [
[£ SARL Explorer 2 § 7 0@ Ho i
¥ ';';_5"iu—sarl-tutclriaIs-pingpungspace ~ 25
- .":sl.MAS‘MI 26= agent HolonicAgent {
w . 27 uses Logging, Lifecycle
v 4B sic/main/sarl 28
v ﬂagems 299 @SuppressWarnings("discouraged_reference”)
13 Assembly.sarl 388 on Initialize {
ﬁ DataStorage sarl 31 . .
Q HolonicAgent sarl ;i println("Command line parameters: + occurrence.parameters)
1D Maintainer sar 34 /* Loading setup configuration from holonic AAS for agents parametrization */
B qualityl sarl 35
@Quahf_yz_san 36 info("Holen is active now and is spawning all belonging agents!™)
) TakeoutPlace sarl 37
) Transport sarl 38 /* HMI Agents */
ki . 39
v capacities 40 spawn{Maintainer)
Q AssemblyCapacity.sarl 41
@) DataStorageCapacity.sarl 4z /* Transport Agents */
©) PickAndPlaceCapacity.sarl 43
@ QualityCapacity sarl o spawn(Transport)
' 45
© TransportCapacity.sarl 46 /* Production Agents */
v i events a7
@ GeneralBehavior.sarl 48 spawn({Assembly, "Assembly™)
. 439
g :al‘:trnanie'ﬁrl 1] spawn(Qualityl, "Qs1")
! Module sari 51
Q Transport.sarl 52 spawn(DataStorage, "DataStorage”)
v skills 53
@ Assemblyskill sarl :: spawn(Quality2, "Qs2")
S DaLaStorageSkwl!,sarl 56 spawn{TakeoutPlace, "TakeoutPlace")
@ pickandplaceskill sarl 57
© qQualityskill sarl 58 }
@ TransportSkill sarl L]

Figure 10: Holonic Agent with initial spawn procedure °

Inside of the MAS4AlI example, an holonic agent (which is also used for the boot
configuration) can spawn predefined agents. In the MAS4Al example implementation of the
Smart Factory testbed environment, several resource agents (for manufacturing or
transportation) as well as an HMI agent will be spawned during the initialization.

It is possible to setup a configuration for several points in time, for example during
initialization, to define which agents should be available and which configuration should be used.
Therefore, it is possible to start the holonic agent with several input parameters. For the setup
of this agent, the configuration could also be stored inside the related AAS of this holonic agent,
loading the configuration and the parametrization of the agents to spawn.

It is possible, if the AAS is used for the configuration, that during runtime of an holonic
instance, several changes could be done, to enable a flexible system setup of related agents. Each
agent implements a behaviour where related skills are considered can composed during the

5 SARL IDE (Project Setup and Holonic Agent)

Page | 19

Dissemination level: PU



D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

MAS4A|*

runtime. In Figure 11, an example for a resource agent which is responsible for an assembly
module is presented. The resource agent can be requested to start manufacturing by using skills
for “Pick and Place” and “Assembly” in a predefined manner, creating a behaviour as an own

pattern.
© HolonicAgentsarl {9 Assemblysarl = O | |B% outline 7
165 B o N A 1 agents
166€ /" v 4) TickerBehavior
167 : Initiate lock of production asset occupation state machine 3 ‘; capacity uses
1:2 / o limit : int
170 Lock(json) 4P agentname : Siring
171 %D  on Behaviorlnitialize
172& »": o “®  on Ticker [occurre. ]
1;31 xfIrutlate Inward “® on Ticker [occurre...)
175 @ exampleDef{long) - Long
176 Inward(skillparam, json) v () AssemblyBehavior
177 y 4 = capacity uses
1;:' ": Initiate Assembly o comspace : OpenEventSpace
188 *f O agentname - 5tring
181 “D  on Behaviorlnitialize
182 Assembly(json) < “D on Move
183 B “D  on Skill_Begin
Asds "o “@  on skill_End
185 * Initiate Outward
186 / - hd @‘ Assembly
187 T > B capacity uses
188 Outward(skillparam, json) 4_.___________________‘_‘_‘_-_-‘:_""-——- o assemblySkill - AssemblySkill
188 o pickAndPlaceSkill - PickAndPlaceskill
19eE /* o TickerBehavior : TickerBehavior
191 * Initiate free of production asset occupation state machine ) -
192 . o AssemblyBehavior - AssemblyBehavior
193 B comspace : OpenEventSpace
194 Free(json) 8 name : String
185 . %@ on Initialize
12: wake(new Skill_End) “D  on ShuttleMoveDone [!isFromMe]
198 . “D on Destroy

To use the possibility to implement skills inside of an agent or behaviour, at first the related

Figure 11: Skill implementation inside behaviour of an Assembly Agent &

capacity must be defined, as presented in Figure 12.

6 SARL IDE (Skill usage inside of agent behavior)

Dissemination level: PU

Page | 20



MAS4A|*

D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

capacity AssemblyCapacity {

/* Build JSON Argument Call String */

def BuildJSONCommand(asset

: String) : String

/* Get Control-Lock of Production Asset State Machine */

def Lock(json

/* Invoke Assembly

def Assembly(json :

: String) : Integer

o

String) : Integer

/* Remove Control-Lock of Production Asset State Machine */

def Free(json

}

: String) : Integer

Figure 12: Example Capacity object for AAS-related submodel methods of an Assembly Module ?

The predefined methods of the capacity are matching to AAS submodel operations, which
must be available in the related data / AAS layer, for example by using the BaSyx-Middleware or
OPC UA. The skill thus also represents the communication related implementation to interact
with an AAS. The implementation is based on a predefined AAS submodel structure with
operations and properties, which represents a physical or software asset.

@ HolonicAgentsarl [ ﬁ Assembly.sarl |-§- AssemblySkill.sarl

82 }
83
& BAS override Assembly(json : String) : Integer {
85
860 I
87 * AAS-Example-Command
88 *
89
98 var url_command : String = "" // Insert AAS-URL here
91 var response : int
92
938 if (url_command.equals{"")) {
94 info(“Access of AAS-Function Assembly - TBD.")
g5 return response
96 }
97
98 var url : URL = new URL(url_command)
99 var connection : HttpURLConnection = url.openConnection() as HttpURLConnection
1ee
101 connection.setDoOutput(true)
182 connection.setInstancefollowRedirects(false)
183
104 connection.setRequestMethod("POST")
185 connection.setRequestProperty(“Content-Type”, "application/json™)
106
187 connection.getOutputStream().write(json.getBytes("UTF-8"))
108
189 response = connection.getResponseCode()
118 info("Response code for Assemble is: " + response)
111
112 connection.disconnect();
113
114 return response

Figure 13: Communication pattern inside the skill

7 SARL IDE (Capacity Example)
8 SARL IDE (Implemented Skill Example)

Dissemination level: PU

Page | 21



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

The definition of several skills patterns, for example if the request of an AAS is done, can help
to support a standardized AAS interface description, which can be flexibly adapted by the agents.
For future setup mechanisms, this approach could be combined with a dynamic search in the
related RDF Store, as knowledge base, and an AAS registry, to search for related assets, their
capabilities, and their communication possibilities. Related to the search results, it should be
investigated, if the selection for the suitable skill template in Janus could be parametrized by an
agents AAS or be selected dynamically during the runtime behaviour of the MAS.

Page | 22

Dissemination level: PU



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

4 AAS BaSyx-Setup

4.1 Overview of BaSyx-Middleware Elements

The BaSyx-Middleware consist of several components, interactions, and interfaces, which are
intended to use on four layers, which are described as follows [10]:

Plant Layer

The plant layer consists of higher-level components, which can manage and monitor the
production. Furthermore, optimization approaches can also be seen on this level.

Middleware Layer

The middleware layer provides reusable Industrie 4.0-Components which implements
capabilities for production lines. This layer also provides components for Registry and
Discovery, protocol gateways and software to provide the Asset Administration Shell.

Device Layer

Based on automation devices with an interface to integrate into BaSys. This layer can also
provide the BaSys-conformant interface for field layer components without this interface.

Field Layer

Based on automation devices, sensors, and actuators without interface to BaSys.

Related to the requirement of the MAS4Al framework for virtualized representation with
defined interfaces of the manufacturing environment, the BaSyx-Middleware provides the
possibility to integrate field level devices for data collection and representation by using the AAS.

Related to the intended setup of the MAS, Agent Service Descriptions are necessary, which
can also be provided with the AAS. The necessity of an Agent Repository and Agent Discovery
Service can thus be based on the same mechanisms of AAS for physical or virtualized assets. The
gateway function of BaSys thus enables the possibility to integrate various components into a
single point for data collection and usage, for example by using an AAS.

The MAS system element of the proposed MAS4AIl framework can thus be seen as additional
element on the Plant Layer of BaSyx, which is responsible for control and monitor of production

Page | 23

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

line, but it is also possible to let agents act on several levels, like for example the device layer.
Furthermore, the collected data from the environment could be used for further optimization by
Al agents. For the MAS4AI framework approach, the overview of the BaSyx components is
enhanced with several elements, as presented in Figure 14:

Plant Layer
Lookup
Monltonng -

Middleware Layer

(Agent-System}

Strategy /
Optimization

Process Control

Register Directory / Registry

Services

Asset Administration
Shell

Invoke
Submodels

Services

Data Collection

Device Layer

Invoke

Status

Field Layer

Figure 14: BaSyx-Components according to [10], extended with agent-based component

The (holonic) agents of the MAS framework components interact with the AAS of integrated
assets of the BaSyx system. On the Device Layer, the concepts of the Group Component, the
Control Component as well as de Device Integration plays an important role. The device
integration object which is used in the MAS4AI AAS / Data Layer setup thus consists of protocol
adapters which translates data from and towards the Field Layer in a BaSys-conformant way and
stores the information in a related AAS.

For control purpose, the concepts of the Control Components are considered for agent-
related process control. The Group Component could be used as aggregated concept to interact
with many control components and could be used for holonic agents as well as for resource
agents. The control component also provides the possibility as predefined interface in the AAS of
the asset to let agents interact with the related submodel by using agent-related concepts, like
the Janus SARL skill pattern. The executed skill of the agent therefore uses the AAS with the
Control Component submodel and places the request with the predefined structure in a suitable
call pattern. If the AAS is hosted in HTTP or OPC UA, skills for these implementations could be
used.

Page | 24

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

BaSyx thus provides several elements that are categorized into Plattform 14.0 compliant
components and BaSys components, with the following main components [11]:

- Asset Administration Shell with Submodels

The AAS provides a digital representation of 14.0 assets, where submodels describes one
logic aspect of the represented asset, which are accessible by using HTTP REST or OPC UA.

- Registry
The registry allows to register of new AAS and the search by using the identifier.
- Control Components

The concept of the control component provides a unified possibility to access services on
devices, for example by using related state machines like PackML.

Figure 15 visualizes the components of the BaSyx-Middleware, which are described in the
BaSys documentation [11]. Each of these components provides own documentations of their
integration and setup.

Plattform 14.0 Compliant

BaSys-Components BaSys-Components

Control Component

Asset Administration Shell

Group Component
AAS-Submodels P P
Virtual Automation Bus
Registr

SIS Device Integration

Discovery

Gateway

Figure 15: Platform 14.0 compliant and additional BaSys-components, according to [11]

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

4.2 BaSyx-Installation and setup of related concepts

The BaSyx-Middleware provides implementations with different programming languages,
which are provided as own development stacks [12]. The development stacks which provide the
largest functional scope are the implementation in Java, .Net and C++. The implementations in
RUST and Python thus are additional stacks, which are provided. In the scope of the MAS4AI
framework setup, the BaSyx-Middleware which is implemented with the Java SDK has been used.
It is also possible to use another development stack, if they can provide similar function scope as
provided already in the Java development stack.

Basic Development Stacks Additional Stacks

e IDE: Eclipse
e IDE: MS VS

e IDE: Eclipse

Figure 16: BaSyx Implementations, according to [12]

The BaSyx Java SDK have installation requirements which are described for related setup in
the related documentation [13] and can be provided by using GIT. During the installation of the
BaSyx Java SDK, the projects with dependencies must be imported (BaSys.sdk, BaSys.components
and BaSys.examples). The implemented projects can be built by using the functionalities of
Maven.

The content of the several packages consists of Java files. The core elements and basic
functions like the AAS and submodel classes can be found inside the BaSys.sdk, and additional
components, for example database connectors and registry components are in the
BaSys.components project.

The structure with the mentioned projects and dependencies are presented in Figure 17:

Page | 26

Dissemination level: PU



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

BaSyx - Java

BaSys.sdk R R === Basic Library

BaSys.components Additional Library

BaSys.examples Programming Examples & Templates

Own Programming or CanvAAS Code-

BaSys.ownProject
¥>.OW ) Generator

Figure 17: BaSys Java SDK projects and dependencies, according to [13]

The BaSys.sdk consist of core functionalities, as presented in Figure 18. This project has all
classes, to build up the AAS, the AAS Submodels with all corresponding elements and the
components for the Virtual Automation Bus, which is needed to integrate several protocols.

- Asset Administration Shell - AAS Submodels - Virtual Automation Bus

- Factory - Qualifier - Model Provider
- Metamodel - References - Protocols
- REST-API - Submodel Types - OPCUA

- Digital Nameplate - MQTT

- Technical Environment - HTTP

- Submodelelements -

- Properties

- Events

- Operations

Figure 18: BaSys Java SDK with content of BaSys.sdk °

% BaSyx-IDE (BaSys.sdk)

Page | 27

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

The BaSys.components project consist of a library part, where the components are available
as additional Java classes, and a docker-related part. In Figure 19, the content of this project is
presented:

BaSys.components

- Docker-Components - Library-Components
v 454 basyx.components.docker v (Eybasyx

» i basyx.components AASServer > (% components

» i3 basyx.components AASX v g models

> §7% basyx.components registry v (B3 controlcomponent

» £ basyx.components simple

' basyx.components sqlregistry

» g5 basyx.components xmlAAS

> ,'75 target
Eg pom.xml|

@ ControlComponent java
@ ControlComponentChangelistener java
Lj‘g ExecutionMode java Control
@ ExecutionOrderjava ~ ~—»
\ [d Executionstate java Com pone nt

[{‘:} OccupationState java

[g‘,\,‘ SimpleControlComponent java

AASX / SerVel" / RegIStI’V @%SlmpIeProxyControlComponent,java
> & support
v [ tools
> By aas Database

> Eysql
» ysqprony Access
> [ webserviceclient

Figure 19: BaSys Java SDK with content of BaSys.components °

The docker-related components provide the possibility to set up an AAS deployment for
several elements, which are necessary for the MAS4Al framework. Docker files with
documentation can be found for the following components:

- AAS Server [14]

Component to host several AAS with submodels for assets or MAS4AI agents.
- AAS Registry [15]

Component to host registered AAS for assets or MAS4Al agents
- Updater Component [16]

Component for asynchronous communication, providing data from several data sources
like Apache Kafka to related AAS.

The BaSys.examples project provides several programming patterns and examples, how the
elements of the BaSyx Java SDK can be used, for example to create and update an AAS with

10 BaSyx-IDE (BaSys.components)

Page | 28

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

related submodels. It is also shown how predefined AASX models, which are modelled in the
AASX Package Explorer [17], can be hosted by using the BaSyx-Middleware. This part is also
relevant for the MAS4AIl framework, to integrate and setup the modelled AAS for several agent
types with the proposed functionality.

The examples which can be applied to the scope of the MAS4AIl framework is related to the
AAS and AAS Submodels examples and the AASX Hosting example, with consideration of the
BaSyx Registry and AAS Server component. The content is presented in Figure 20:

BaSys.examples

v -2 basyx.examples [Basyx develo nt]
d:?ﬂJZtaS(ri; Resourﬁs e AASX HOSting (ind'
v [ sre/main/java _— Registry / Server)
> aa org.eclipse basyx.examples. scenarios cloudedgedeployment /
> H3 org.eclipse basyx.examples scenarios staticdynamic
> a}org.eclipse.basyx.e)camples.snippets.aas —
> 3 org.eclipse.basyx.examples snippets. manager T—
> morg.eclipse.basyu.e)camples.snippets.property —:_:;-* AAS Basics (AAS + Submodel)
> Eaorg.eclipse.basym.examples_snippets.registry _d___ff-"f
> E@,org.ecl|pse.basyu.e)¢amples.snlppets.submndel -
£ org.eclipse basyx.examples.snippets.submodel.eclipse.basyx.e»
> E?_,org.eclipse.basyx.examples.support
> H3 org.eclipse basyx.examples support. directary

Figure 20: BaSys Java SDK with content of BaSys.examples

An own project can thus be developed on basis of the predefined examples or by using Code-
Generators like Eclipse CanvAAS [18]. The structure of an own implementation furthermore
follows the same dependencies as the BaSys.examples project.

11 BaSyx-IDE (BaSys.examples)

Page | 29

Dissemination level: PU



MAS4A|*

4.3 Setup of AAS with AASX Files for Agent Service Descriptions

D2.1 — User Manuals on Accessing and Using the MAS

H2020 Contract No. 957204

The setup of the BaSyx components to build up AAS Server and registry with the AASX is
required for the MAS4AI (holonic) agent’s setup. Therefore, the modelled AASX information
models can be integrated in BaSyx for several agent types and then instantiated. In Figure 21, a
modelled example of a resource agent in the AASX Package Explorer is shown.

™ AASX Package Explorer - local file: C:
File Workspace Options Help [«]|@

AAS\AASK Files | agent V0.1, 3asx buffered to: C:

. %
“ “Nameplate” [IRI, hitps://example com/ids/sm/1403 3172 2112 3720)

“ManufacturerName™

[ “ManufacturerTypName™

[ITTR ~PhysicalAddress01” (5 elements)
23 “Typciass”

(229 “serialNo® = JO43

(3 ~chargetd”

(2223 “countryoforigin

(2299 “YearOfConstruction”

IR “Marking CE" (2 eloments)
[ITTR “Marking CRUUS® (2 elements)
“Marking RCM" (2 elements)

Element | Content

Referable:
idshort ResourceARS

idType: RI
i hitps //masdai ew/aas/resourceAgent
version: 1

revision 0

Asset Reference.

assetRet
117221127484

idshort ExampleResource
description: ] This is an example resource which should be replaced by the actual resource being |

E R, 3172 2112 0735) HasDataSpecification (Reference):
+ |[ET] "MASSAAL Agent™ (1R, htpsy/example.com/ids/sm/8503 3172 2112 2660] Identifiable:
2w gy iype R
L hittps.//example com/ids/asset/2482_1172 2112 7484
(2259 "Part of HOLON® version 1
{sm] L, 3172 2112 9116 s e
T Kind:
123 3172 2112 |
BT storege 1, htps//example comids/sm/7123 2 0289 = e

‘Submodel references with special meaning.

3172.2112,0735

Figure 21: AAS Model for Resource agent *?

To integrate the AASX files for usage in BaSyx, they must be integrated as resource files into the
BaSyx project.

v [~ src.main.resource
071_Resource_agent_V0.1.aasx
02_Product_agent_V0.1.aasx
03_Planning_agent_V0.1.aasx
aas.properties
AASServer.properties
context.properties

Figure 22: Integration of AASX Files into the BaSyx project 13

Inside BaSyx, an own AAS Server must be created, and the AASKX file of the resource folder can
be integrated and registered on the started registry component.

12 AASX Package Explorer (with Resource agent AAS model from WP3)
13 BaSyx-IDE (Resource-Package of MAS4Al implementation for AAS Hosting)

Page | 30

Dissemination level: PU



O D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

ResourceAgentAASServer java 2

53

54 private List<IComponent> startedComponents = new ArraylList<>();

55

560 public- static void main(String[] args) throws InvalidFormatException, IOException, ParserConfigurationExce
57 new ResourceAgentAASServer();

58 }

59

602 public ResourceAgentAASServer() throws InvalidFormatException, IOException, ParserConfigurationException,
61

62 // - Startup the registry server

63 startRegistry();

64

65 //-Startup-the server

66 startAASServer();

67

68 //-Load Bundles from- .aasx file

69 AASXPackageManager packageManager = new AASXPackageManager("01_Resource_agent_V@.1.aasx");
70 Set<AASBundle> bundles = packageManager.retrieveAASBundles();

71

72 //-Load the new Bundles to-the-Server

73 AASBundleHelper.integrate(new AASAggregatorProxy(SERVER_URL), bundles);

74

75 //-Get-a- RegistryProxy and-register-all -Objects contained-in-the Bundles

76 AASRegistryProxy - proxy = new AASRegistryProxy(REGISTRY_URL);

77 AASBundleHelper.register(proxy, bundles, SERVER URL);

78

Figure 23: Parsing and Hosting the AASX Model inside BaSyx

Related to the program example in the BaSys.examples, the Registry and AAS Server can be

started by using the following program line.

Joe
* Starts an empty registry at "http://localhost:4000"
'
private void startRegistry() {
. // Load a registry context configuration using a .properties file
Reg|stry BaSyxContextConfiguration contextConfig = new BaSyxContextConfiguration();
contextConfig.loadFromResource("RegistryContext.properties™);

BaSyxRegistryConfiguration registryConfig = new BaSyxRegistryConfiguration(RegistryBackend.INMEMORY);

RegistryComponent registry = new RegistryComponent(contextConfig, registryConfig);

registry.startComponent();
startedComponents.add(registry);

}

/e
* Startup an empty server at "http://localhost:4001/aasx/"
*/

private void startAASServer() {

// Create a server at port 4001 with the endpoint "/aasx"

BaSyxContextConfiguration contextConfig = new BaSyxContextConfiguration(4001, "/aasx");

AASServerComponent aasServer = new AASServerComponent(contextConfig);

Server // Start the created server
aasServer.startComponent();

startedComponents.add(aasServer);

Figure 24: Program part to start AAS Server and Registry °

If the registry component is available, the content of all registered AAS is reachable with HTTP

URL, getting all registered AAS with submodels.

14 BaSyx-IDE (Code Example for AAS Server for the Resource Agent)
15 BaSyx-IDE (Code Example for Start of AAS Server and AAS Registry)

Dissemination level: PU

Page | 31



MAS4AI~

A a:H
w endpoints:
v a:
¥ address:
type:
w modelType:
name:

w identification:

"http:ss/localhost: 4ee1/aasx/shelLs/https¥aazrEarmas4al, cu2roaskzrresourceagent/aas”

“http"

"aAssetadministrationshellpescriptor™

D2.1 — User Manuals on Accessing and Using the MAS

H2020 Contract No. 957204

idType: “IRI"
id: "https://mas4ai. eu/mas/resourcedgent™
idshort: "ResourceAAs”
- asset:
w identification:
idType: “IRI"
id: “https://example.com/ids/asset /2482 1172 2112 7484"
idshort: "ExampleResource™
kind: "Instance”
w administration:
dataspecification: [1
version: 1"
embeddedDataSpecifications: [1
revision: s
dataSpecification: [1
w description:
v a:
language: "en”
v text: "This is an example resource which should be replaced by the actual resource being exposed through the MAS4AI framework.™

Figure 25: Registry example with registered AAS of Resource Agent °

The registered Resource Agent AAS can be reached by using the endpoint information, which
is stored in the related Registry. The AAS and all related submodels are then available for usage
with the MAS system element inside the MAS4AI framework.

conceptbictionary:
w @ssetRef:
w keys:
v a:
idType:
type:
value:
local:
w identification:
idType:
id:
idshort:
w administration:
dataspecification:

version:

embeddedbataspecifications:

revision:
dataspecification:
» modelType:

name :

[1

"IRI"
"asset”
“hitps://exaomple. com/ids/ass5et/2482 1172 2112 7484"

true

"IRI"
"hitps://masaai. eu/eas/resourcedgent™

"REsoUrCeAAs”

[1
nqm
[1
ngn
[1

"Assetadministrationshell”

Figure 26: AAS server of the Resource Agent 7

16 Asset Administration Shell JSON-Serialization in Web-Browser
17 Asset Administration Shell JSON-Serialization in Web-Browser

Dissemination level: PU

Page | 32



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

4.4 Data Collection Services

Inside the BaSyx-Middleware, there are several possibilities to store data from integrated
devices into databases. Therefore, the BaSys.components project provides functionalities with
docker and database connectors in the libraries part, for example with the Postgres-Integration
as described in the related documentation [19]. The related connectors to collect data from the
AAS can be found in the component. The related classes are shown in Figure 27:

s v [ eclipse
*.SQL Driver for the connector v [Zybasyx
/ » [£f components
private ISQLDriver driver; > gmod:l’s
> 3 support
/** v [y tools
* . Constructor > k%aas
v
|
*. @param user SQL user name ﬁsq .
v
*.@param pass SQL password %dmﬂ o
@param url SQL server URL ) 1sQLDriver java
* @param driver SQL driver mSQLDviurjava
* @param prefix IDBC SQL driver prefix v Gyquery
S.Snares : .
'f\_updld tableID ID of table for this element in database @Dynaml:SQLDpefallbn.}ava
public SQLConnector(String user, String pass, String url, String driver, String prefix, String tablelID) { @DynamicSQLQuelyjava
// 1D of table hat contains elements of this element @D}'ﬂami:SQLRunncrjava
sqlTableID = tablelD; ¥ DynamicSQLUpdate java
~ E@sqlproxy

//-Instantiate a driver for the SQL Connector

this.driver = new SQLDriver(url, user, pass, prefix, driver); ! ﬁe:zepﬂcnr
} &) saucollection java

Eﬂ sQLConnectorjava

Figure 27: BaSyx-Middleware - SQL Integration 2

To collect data from the AAS, classes as shown in Figure 28 can be used to collect data from
an AAS to a related database.

protected void addToMapSimple(String mapName, SQLTableRow sqlMapElement) { v [&F sqlproxy
// Execute addToMapSimple operation » (£ exception
addToMapSimple(getDriver(), mapName, sqlMapElement); @SQLColle(honJava
) ; :
@ SQLConnector java
[«‘B SQLMap java
1% : @SQU’mxy;na
* Insert an object into the data base mSQLRoolElanava
* @param drv JDBC driver to be used B saursbiehowjove
* @param mapName Name of map > [ webserviceclient
* @param sqlMapElement Map element
*f

protected void addToMapSimple(ISQLDriver drv, String mapName, SQLTableRow sqlMapElement) {
// SQL insert statement
String updateString = "INSERT INTO elements."+mapName+" (name, value, type) VALUES (‘'$name’, ‘$value’, ‘Stype')";
DynamicSQLUpdate dynUpdate = new DynamicSQLUpdate(drv, updateString);

// Parameter for insert statement

Map<String, Object> parameter = new HashMap<>();
parameter.put(“name”, sqlMapElement.getName());
parameter.put(“value”, sqlMapElement.getValueAsString());
parameter.put(“type”, sqlMapElement.getTypeID());

// Execute SQL statement
dynUpdate.accept(parameter);

Figure 28: BaSyx-Middleware - AAS data collection with SQL *°

18 BaSyx-IDE (Java Class with SQL Driver)
19 BaSyx-IDE (Java Class to prepare AAS properties for storage in the database)

Page | 33

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

Furthermore, it is possible to use the BaSyx Updater Component to represent data from
several data sources like MQTT, Apache Kafka, Apache Active MQ or Eclipse Paho and to
synchronize data in an asynchronous way to represent them into the AAS [16]. In the
implementation during BaSys 4.0, there are also examples for integration of Kafka into the BaSyx-
Middleware and to use communication channels for the data stream [20].

To setup a data collection service inside of an own BaSyx-Implementation, an update
program, which actualizes selected AAS properties can be used to collect related data. Therefore,
several data storage adapters can be implemented. In Figure 29, an example is given, where the
actual values of an AAS property is stored in a connected database as well as provided as Kafka
Stream.

public-void CollectDataWithSQL(String -value) {
DBAdapter.writeDataToDatabase(AssetIDShort, prop.getIdShort().toString(), value);

}

public void CollectDataWithKafka(String value) {

KafkaAdapter.writeDataToKafka(AssetIDShort, prop.getIdShort().toString(), value);

Figure 29: BaSyx-Middleware: Setup of Data Collection Services 2°

These possibilities for data collection could be used for AAS of related assets as well as for
AAS which are setup for agents. Furthermore, it is possible to use the mechanism to collect data
and to store it by using a Kafka data stream also directly in a MAS, for example if an agent
observes values which are updated in AAS properties for physical assets, as well if an Al agent
wants to collect selected data, for example for machine learning purpose.

20 BaSyx-IDE (Code Example of data collection program with interface for storage in SQL-Database and Apache Kafka)

Page | 34

Dissemination level: PU



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

5 Kafka Setup

Agents in the MAS need to communicate with each other to effectively solve the problems
and reach the goals. That is why the message transport system (MTS) the mandatory part of every
MAS. In the setup with just one MAS runtime all the agents communicate using the mechanism
provided by this MAS. In the multi-runtime setup some external middleware, external MTS, is
needed to provide the reliable messaging services. There are several requirements to the
external MTS:

e |t should be based on open technologies and independent from the MAS. To establish
communication between different MASs the external MTS needs to be MAS-agnostic.

e Agents in the different MASs should not notice that they are interacting the agents from
the other MAS.

e The middleware should be robust and scalable solution.

e The middleware can also be used not only as an MTS, but also for the data gathering
solution. It is especially valuable for the ML agents.

e The middleware should have extensive modelling capabilities to provide support for
complex data types transmission.

Kafka is the middleware that can satisfy all the defined requirements. Kafka is an event
streaming platform and combines three key capabilities:

1. To publish and subscribe to streams of events, including continuous import/export of data
from other systems.

2. To store streams of events durably and reliably.

3. To process streams of events as they occur or retrospectively.

And all this functionality is provided in a distributed, highly scalable, elastic, fault-tolerant,
and secure manner. Kafka can be deployed on bare-metal hardware, virtual machines, and
containers, and on-premises as well as in the cloud. Kafka is a distributed system consisting of
servers and clients that communicate via a high-performance TCP network protocol.

Kafka runs as a cluster on one or more servers. Some of these servers form the storage layer,
called the brokers. Other servers run Kafka Connect to continuously import and export data as
event streams to integrate Kafka with the existing systems. This can be especially useful for
digesting the data from the factory flow to provide it to the ML agents. Kafka clients allow to
write distributed applications and microservices that read, write, and process streams of events
in parallel, at scale, and in a fault-tolerant manner even in the case of network problems or

Page | 35

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

machine failures. Clients are available for Java and Scala including the higher-level Kafka Streams
library, for Go, Python, C/C++, and many other programming languages as well as REST APlIs.

5.1 Kafka main concepts and terminology in relation to agents.

In this section some of the main concepts and terminology used in Kafka are described.
Figure 30 shows the relationship between the Kafka producer, consumer, and the topic.

A producer sends a A consumer subscribes
message to 1 topic to 1 or more topics
(at a time)

1.*

Producer Consumer
0.* 0.7%

A topic has 0 or more producers A topic has 0 or more consumers

Figure 30: Relationship between the event’s producer, consumer and the topic, according to [21]

An event represents a fact that something has happened in the world of interest. Conceptually,
an event in Kafka has a key, value, timestamp, and optional metadata headers.

Events as the high-level abstract concept can be easily used to implement the communication
between the agents. When an agent wants to send a message to one or more other agents it
generates an event of a particular type. The interested agents normally listen to the event types.
The event-based communication middleware ensures that the generated event will be delivered
to the listeners. The concrete delivery mechanisms depend on the middleware. The types of
events can be arbitrary complex and represent the messages defined in ACL from the FIPA
standard or the messages from the 14.0 Language. To implement complex event’s types in Kafka
we can use the metadate headers.

Producers are those client applications that publish events to Kafka, and consumers are those
that subscribe to these events. In Kafka, producers and consumers are fully decoupled and
agnostic of each other, which is a key design element to achieve the high scalability. For example,
producers never need to wait for consumers. Kafka provides various guarantees such as the
ability to process events exactly-once. This information subscription pattern is useful when the
agents consume data. To enable agents to interact with each other we need to implement

Page | 36

Dissemination level: PU



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

different interaction protocols on top on the Kafka communication layer. These protocols are
defined in 14.0 Language.

Events in Kafka are organized in topics, which are always multi-producer and multi-subscriber
in Kafka. A topic can have zero, one, or many producers that write events to it, as well as zero,
one, or many consumers that subscribe to these events. First agent-based systems were normally
heterarchical where every agent spoke to every other one. That was not efficient form the point
of data transfer. Such systems completely lacked structure, were unpredictable in many cases
and were very hard to maintain. The holonic architectures use flexible hierarchies that can be
build and dissolved in response to the changing conditions. To implement such flexible structures
the Kafka topics can be used to constrain the producers and the consumers to the topics.

5.2 Kafka setup for MAS Framework.

Figure 31 shows the block diagram of how possibly two MAS runtime can communicate with
the help of the Kafka middleware. Each MAS has the local agent management system (AMS) for
the agents’ supervisory control, the local directory facilitator (DF) or the yellow pages service for
registering agents’ services or skills, the message transport system (MTS), and the
communication holon, which serves as a communication portal to the other MASs. For the global
setup we will also need the global AMS and the global DF. The role of global MTS will play Kafka.
Each local communication Holon will have at list one Kafka producer and one Kafka consumer
and will ensure the seamless and transparent communication between the agents of different
MASs.

Kafka provides several APl that can be used in the communication holon:

e The Admin API to manage and inspect topics, brokers, and other Kafka objects.

e The Producer API to publish streams of events to one or more Kafka topics.

e The Consumer API to subscribe to one or more topics and to process the stream of events
produced to them.

Page | 37

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

' |
' [
[z |
T
' !
<<block>> % <<block>> % <<block>> %
Agent Local AMS Local DF

~N | 7

|
|
|
|
|
|
|
|
|
| <<block>> ;E
| Message Transport System
|
|
|
|
|
|
|
|
|
|

<<block>>
‘Communication

Holon

- <<block>> ;E
Kafka Producer o
¥ : .
<<block>> @ <<block>> ;E <<block>> ;E <<block>> %
Global AMS Topic Topic Global DF
A i T
<<block>> % 1 <<block>> %
Kafka Consumer Kafka Producer E

o 0

<<block>>
Communication

Holon

<<block>> @
Message Transport System

<<block>> % <<block>> % <<block>> %
Agent Local AMS Local DF

Figure 31: Two MAS runtimes communicates through Kafka
Next, we describe the minimal setup for the typical Kafka cluster.
For the setup of Kafka, we used an official quick start guide [22] from the Kafka website and [23].
Environment’s setup.
1. Installing Java.

Before installing Kafka or ZooKeeper we need to install Java and get in running. Kafka and
ZooKeeper work well with all OpenJDK-based Java implementations, including Oracle JDK.
Though ZooKeeper and Kafka will work with a runtime edition of Java, it is recommended when
developing tools and applications to have the full Java Development Kit (JDK).

2. Installing ZooKeeper.

Page | 38

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

Apache Kafka uses Apache ZooKeeper to store metadata about the Kafka cluster, as well as
consumer client details. It is a centralized service for maintaining configuration information,
naming, providing distributed synchronization and group services. The use of ZooKeeper in Kafka
is shown on Figure 32.

Praducer »{ Kafka broker

Consumer (old)

A 4

Consumer metadata
partition offsets

Broker and
topic metadata

ZooKeeper

Figure 32: Kafka ZooKeeper, from [23]
3. Installing Kafka

After Java and Zookeeper are installed, Apache Kafka can also be installed. The current version
can always be taken the Kafka website. The docker image can also be used.

Installing Kafka in Docker.

Probably the best way to install and setup the default Kafka is by using docker images and docker
compose. For the demo purposes we used the docker images from
https://hub.docker.com/u/aimvector.

Next, we show some snippets of the docker-compose file to install the ZooKeeper and the Kafka
instances. The snippets are taken from the GitHub [24].

Page | 39

Dissemination level: PU


https://hub.docker.com/u/aimvector

O D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

FROM cpenjdk:11.@.1@-jre-buster

RUM apt-get update &8 \
apt-get imstall -y curl

ENV KAFKA_VERSION 2.7.@
ENV SCALA_VERSION 2.132

RUN mkdir ftmp/kafka &8
curl "https://archive.apache.org/dist/kafka/${KAFKA VERSION}/katka_${SCALA_VERSION}-${KAFKA VERSION}.tgz" \
-0 /tmp/kafka/kafka.tgz && \
mkdir /kaftka &% cd /kafka &%
tar -xvzf /tmp/kafka/kafka.tgz --strip 1

COPY start-kafka.sh Jfusr/bin
RUM chmod +x fusr/bin/start-kafka.sh

MDD [“"start-kafka.sh"]

Figure 33: Dockerfile for installing Kafka

FROM openjdk:11.8.18-jre-buster

ENV KAFKA_VERSION 2.7.@

ENV SCALA_VERSION 2.13

RUN mkdir /tmp/kafka && °\
apt-get update &%
apt-get install -y curl

RUN curl “https://archive.apache.org/dist/katka/${KAFKA_VERSION}/kafka_3%{SCALA VERSION}-%{KAFKA_VERSION}.tgz" \
-o ftmp/kafka/kafka.tgz && \
mkdir /kafka && cd /kafka && O,

tar -xvzf Stmp/kafka/kafka.tgz --strip 1

COPY start-zookeeper.sh fusr/bin
RUN chmod +x /fusr/bin/start-zookeeper.sh

MD ["start-zookeeper.sh"]

Figure 34: Dockerfile for installing Zookeeper

1) Building Kafka from the dockerfile:

cd .\messaging\kafka\
docker build . -t aimvector/kaftka:2.7.6@

Page | 40

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

2) Building Zookeeper:
cd ./zookeeper

docker build . -t aimvector/zookeeper:2.7.0

kd ..

3) Starting Kafka:

docker run --rm --name kaftka -it aimvector/kaftka:2.7.@ bash

4) To tune some settings for the Kafka and the Zookeeper with copy the settings files out from
the containers:

docker cp kafka:/kafka/config/server.properties ./server.properties
docker cp kafka:/kafka/config/zookeeper.properties ./zookeeper.properties

5) Create a Kafka network and run 1 zookeeper:

docker network create kafka

docker run -d

--rm

--name zookeeper-1 ~

--net kafka °

-v ${PWD}/config/zookeeper-1/zookesper.properties: /kafka/config/zookeeper.properties ~
aimvector/zookeeper:2.7.8

docker logs zookeeper-1

6) Run Kafka:

docker run -d

--rm
--name kafka-1 ~
--net kafka ~

-v ${PWD}/config/kafka-1/server.properties: /kafka/config/server.properties ~
aimvector/kafka:2.7.0

docker logs kafka-1

7) We can also start everything from one docker-compose file, which example is shown on
Figure 35. Here we start one zookeeper, one Kafka server, one producer and one subscriber.

Page | 41

Dissemination level: PU



O D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

version: "3.8"
services:
zookeeper-1:
container_name: zookeeper-1
image: alsi/zookeeper:2.7.@
build:
context: ./zookeeper
volumes:
- ./config/zookeeper-1/zookeeper.properties:/kafka/config/zookeeper.properties
- ./data/zookeeper-1/:/tmp/zookeeper/
networks:
- kafka
kafka-1:
container_name: kafka-1
image: alsi/kafka:2.7.@
build:
context:
volumes:
- ./config/kafka-1/server.properties:/kafka/config/server.properties
- ./data/kafka-1/:/tmp/kafka-logs/
networks:
- kafka

kafka-producer:

container_name: kafka-producer
image: alsi/kafka:2.7.@
build:

context:
working_dir: /kafka
entrypoint: /bin/bash
stdin_open: true
tty: true
networks:
- kafka

kafka-consumer:

container_name: kafka-consumer
image: alsi/kafka:2.7.@
build:

context:
working_dir: /kafka
entrypoint: /bin/bash
stdin_open: true
tty: true
networks:
- kafka

networks:

kafka:
name: kafka

Figure 35: An example of the docker-compose file

Page | 42

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

5.2.1 Creating Kafka Producer

In this section we describe how to create a simple producer that writes to some Kafka topic.
This producer will be a part of an agent. Figure 36 shows a high-level view on the Kafka
components. To start publishing messages, we need to create a record with a Topic and a Value
as the mandatory fields. The producer takes the record, serializes it, and sends to the network.
There are also some handshaking procedures taking place at the background as it is shown on
Figure 36.

ProducerRecord
Topic
[Partition]
[Key]
Value

------------------------------------

Serializer

When successful,
return metadata

Ifcan'tretry,
throw exception

TopicA Topic B
Partition O Partition 1

Batch O Batch 0
Batch1 Batch 1
Batch 2 Batch 2

RGP (g i g S g gy

Figure 36: Kafka producer components, from [23]

The code snippet on Figure 37 shows the simplest producer with the default settings. First,
we create a properties object. In this example we use strings for the messages, that is why we
can use here a standard string serializer. In step 3 we create a producer with the proper key and
value types and passing the properties object to it.

Page | 43

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

Properties kafkaProps = new Properties(); @
kafkaProps.put("bootstrap.servers"”, "brokerl:9092,broker2:9092");

kafkaProps.put("key.serializer",
"org.apache.kafka.common.serialization.StringSerializer"); @

kafkaProps.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer");

producer = new KafkaProducer<String, String>(kafkaProps); ©

Figure 37: Simple producer with the default settings

The next code snippet on Figure 38 shows how we can send a simplest message to Kafka. We
start by creating a ProducerRecord object agent_message that is accepted by the producer. The
record needs 3 parameters: the name of the topic where we send the message, key, and value.

ProducerRecord<String, String> agent_message =
new ProducerRecord<>("Topic", "Key", "Value");

try {
producer.send(agent_message)

}catch (Exception e) {
e.printStackTrace();

Figure 38: Simplest way to send a message to Kafka

5.2.2 Serializing messages using Apache Avro

Apache Avro is a language-neutral date serialization format and can be used to create
messages of custom types. Avro data is described in a language-independent schema that is
usually defined as JSON document. Avro is especially interesting for the MAS4AI framework
because it enables us to exchange messages in FIPA ACL or 14.0Language formats.

A simplified example of the Avro schema is shown on Figure 39. The official documentation
can be found on the official website [25]. The complete schema of the 14.0Language standard is
out of scope of this deliverable and will be developed during the project.

Page | 44

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

{"namespace": "i4®Language.avro",
"type": "record",
"hame": "AgentMessage",
"fields": [
“"name": "id", "type": "int"},
"name": "name", "type": "string"},

"name": "value", "type": ["null", "string"], "default": "null"}

Figure 39: Simplified example of Avro schema

Avro requires the entire schema to be present when reading a record, so the common pattern
is to use a Schema Registry, which is shown on Figure 40. The idea is to store all the schemas in
the registry and add an identifier for a schema used to serialize the record in the record itself.
The consumer can use the schema id to pull the required schema from the registry and deserialize

the message.

Message with
Producer schemaill

Serializer KKafka Deserializer
broker

Consumer

Current version
of schema

Schema

registry

Figure 40: Serialization and deserialization of Avro messages, from [23]

5.2.3 Creating Kafka Consumer
Creating Kafka consumer is very similar to creating Kafka producer. First, we create a

Properties-Object, set the required mandatory fields, and give it consumer constructor. Figure 41
shows a code snippet of simple Kafka consumer. To subscribe to a topic the subscribe method

should be used as is showed on Figure 41.

Page | 45

Dissemination level: PU



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

Properties props = new Properties();
props.put("bootstrap.servers", "brokerl:9092,broker2:9692");
props.put("group.id", "AgentsMessages");
props.put("key.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer",
"org.apache.kafka.common.serialization.StringDeserializer");

KafkaConsumer<String, String> consumer =
new KafkaConsumer<String, String>(props);

consumer.subscribe(Collections.singletonList("Topic"));

Figure 41: Simple Kafka Consumer

Page | 46

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

6 Setup for Integration and deployment of Agent
Types

6.1 Integration of Cyber-Physical Production Modules into Resource

Agents

The integration of Cyber-Physical Production Modules within the MAS4AIl framework requires
the setup of the predefined framework elements like a MAS system and a middleware solution
with represents the manufacturing environments with the AAS. Following the proposed method,
that the assets provide a digital representation for integration in the MAS4AI framework, this
approach has been evaluated within the SmartFactory demonstration testbed.

D (E€.6. JaNUS SARL, | Refuset Objects-View from
" BaSyx-Side (Shuttle)
ModU;Agem &. Worker-Agent (HMI)
an | Request Parameter |
+Acknowledge" T
,Need Transport*
=B Shuttle-Agent

Middleware (e.g. BaSyx)
URL
SmartFactory-KL PL4 Demonstrator
Assembly AAS + CC Submodel } —
/l Data Update Programm |

Control Component / Device l

7 Integration + Mapping for | Database Adapter |
Asset Parameter (OPC UA)

— ¥ Database

"| BaSyx OPCUA Adapter |
- ‘I OPCUA - Interface I Mapping / Configuration

Parametrization

Figure 42: BaSyx Example Setup of Smart Factory testbed

The current state of implementation for CPPM follows the setup of the BaSyx-Middleware,
to integrate the assets, which provides a OPC UA interface with skill-based information model,
that encapsulates the CPPM capabilities in a predefined way. The integration is provided by using
the OPC UA adapter in BaSyx, which is combined with the concept of the BaSyx Control
Component. The BaSyx Control Component thus provides a predefined interface with the AAS
Submodel for Control Component interaction which follows the specification [26].

Page | 47

Dissemination level: PU



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

The implementation thus must have a Mapping or Configuration File, to connect AAS
submodel elements with respective native protocols like OPC UA. The data collection can be
executed on the level of the control component by using a data update program and related
database adapter.

Each CPPM of the Smart Factory testbed demonstrator thus provides an own AAS with
Submodel, which is hosted on a respective AAS Server in BaSyx. The AAS is thus registered in the
BaSyx Registry component, as presented in the BaSyx setup.

The related resource agents, which are considered as own MAS4Al agent type with subtypes
for resource agents for manufacturing or transportation, can also discover and interact with the
registered AAS of the CPPM setup. Therefore, an agent can request the registry to get the related
endpoint.

BaSyx Server
BaSyx Registry

Storage &
Assembly Data Refuel

oy [ |\ee—" Ve //'. OPC-UA
Adapter : T \ : Adapter

OPC-UA
Adapter

Figure 43: Setup and usage of BaSyx-AAS Server and Registry for CPPM

For the described example of the SmartFactory testbed environment, a resource agent
contains a respective behaviour and, in terms of usage of the Janus MAS, implemented skills to
interact with the AAS Submodels with the corresponding communication interface. If a more
dynamic behaviour should be realized, it is also possible to use different parametrizations on side
of the resource agents, which can be stored in a knowledge base or be optimized by using Al
agents. The setup, that resource agents could select different parametrizations as input
parameters of an AAS Submodel for the Control Component has been evaluated on basis of the
transport shuttle agent of the demonstrator, which sets the destination dynamically to the AAS
if the agent has confirmed a transportation request of a manufacturing resource agent, which
represents an CPPM in the MAS setup.

Page | 48

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

6.2 Integration and deployment of Al Agents

We refer to the agent’s function as an algorithm that maps the agent’s perceptions to its
actions. An agent’s program is an internal implementation of the agent’s function, which runs on
a specific computational platform. Agent’s function is an abstract mathematical description and
can be a part of its AAS and agent’s program is a piece of code that needs to be deployed. In this
chapter, we are talking about the agents’ programs and how they can be deployed and used by
the agents.

The block diagram on Figure 44 shows the possible ways to integrate and deploy different
agents and their programs.

<<block>> %
14.0 CPPM

<<block>> %
Administration Shell

<<use>>

______________________________
<<block>> @ Agent directly call
Pattern Recognitior the ML service from Variant 2
NN the action

|

|

|

|

I <<block>> %
| ML Service
|

|

|

|

|

|

AASRESTAPI 13
Interface

<<block>> ;E
Administration Shell

Agent realizes its

set of actions
packed in a skill

Figure 44 Integrating and deploying different agents and their programs
There are three main possibilities of how we can deploy and use the agents’ programs:

1. The agent’s program is implemented and deployed externally on some computational
platform and the agents uses its functionality through a set of services.

2. Theagent’s program is implemented using MAS framework abstractions and language, in
our case SARL.

3. The mix of the previous two variants.

Page | 49

Dissemination level: PU



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

6.3 Agent’s Program as an external Service

This variant is presented on the diagram as variant 1. As an example, we have a pattern
recognition algorithm, for example a ConvNet that is running on some TPU. This program
provides a web-service that can be used via the REST API. A Quality Check agent in the MAS in its
actions makes direct calls to that service to query the algorithm. This variant has an advantage
that it completely separates the agent’s program development and deployment from the actual
agent in the MAS. The agent’s program implementation can be freely changed, also in runtime,
if the interface stays the same. It is important to hold the interface fixed, so we don’t need to
change the agent’s action that calls this service.

The use of the skill-engineering principals can help here. Following skill-based approach we
abstract some functionality as a skill with the standardised interface and clear usage semantics.
In that case the external ML service, which is provided by the pattern recognition system, is
implemented as a skill with the standard skill model and the agent always knows how to use it.
This enables us to lower the integration efforts.

6.4 Agent’s Program as an internal Agent’s skill

This variant is presented on the diagram as variant 2. Here we exemplary show a Planning
Agent that realises its algorithm as a set of Actions that are composed to a Skill. In that case we
need to follow the SARL skill and capacity metamodel, as presented in the MAS system element
setup.

Each agent in SARL has a set of Capacities that define what an agent can do. From the SARL
specification “a Capacity is the specification of a collection of Actions. Consequently, only Action
signatures can be defined inside a Capacity: no attribute or field is allowed, and nobody (code)
for the Action may be present”. Skill is the actual implementation of a Capacity and comprises of
a set of actions. The actions can be executed as the reaction to the external and internal event,
which are received by the agent. The combination of actions and events that trigger these actions
builds the actual agent’s program.

The SARL model of Skills and Capacities are very similar to the model of Skills and Capabilities
from the skill-based engineering domain. We can easily combine them and use together. Skills
and Capacities enable code reuse and modularity. If we pack the agent’s program as the Skill that
we can easily change it to another Skill if they both implement the same Capacity. This will be
used in the MAS4AI project to share our Agent’s Programs as Skills and hold them in Skills
repositories.

Page | 50

Dissemination level: PU



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

7 Setup of Knowledge-Based Interactions inside
MAS4AI framework

The setup of the integration of the AAS as predefined interface, the search for registered
AAS of agents and assets as well as the usage of the Knowledge Base is important for the general
system communication and requires the setup of the previous presented MAS4Al framework
elements like Janus and BaSyx. The requests for the RDF-Store and the interactions with the AAS
Servers as well as the Registry component of BaSyx are implemented in Janus with predefined
skill templates, similar as they are used to communicate with the AAS Submodel of CPPM. The
RDF-Store, which is provided by the Dydra solution [27], also enables the communication by using
HTTP REST. The modelled integration is presented in Figure 45.

| Holonic Agent | | Agent Types | | BaSyx Server ‘ | BaSyx Registry | | RDF-Store | | Asset |

— ’ I
H ! Response H
activate Holon AAS (with Types) i H
1 Update Request
(Update AAS Holanic Property) (summarized) H
Holon AAL online 4,[ i U
load ' Update -
Configuration LI Assel H
T J Information H
T Updale AAS Reference Property Wugg;s;x
spawn Agents infialize | ; 1eRDF
creals Agent AAS
for each Update AAS Reference Property :|’:| Requestfor
T suilable capable
: agenls —
{ for each
- Response
H {List of IDs)
i 1 Get Endpoints i
|: based on ID List
! Updale List with i -~
: Endpoints
dispatch Events |_|
H H H : Request

Figure 45: MAS interaction model with framework elements during start of an holonic agent 2

At first the holonic agent starts and requests, by using a related Janus skill with a
preconfigured HTTP-Address and request which should also be setup during the skill template,
the RDF-Store as knowledge base. The result is a list from the RDF-Store, which agents should be
used during the initial start behaviour. The holonic agent then starts its AAS by using the AAS

21 Sequence-Diagram (Draw-lI0 Model from Appendix — Part 1)

Page | 51

Dissemination level: PU



O;'l D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

Server of BaSyx and the predefined AAS Model of the holonic agent, for example if it’s an holonic
resource agent, then the AAS Model for Resource Agents is used. Related to the start of the
agents AAS, the AAS is registered, and the RDF Store will be updated with the property, that the
related AAS is holonic.

The same mechanism for built up an AAS and registration is done by assets like CPPM, so that
if an asset is available, the AAS Server will be started in the BaSyx-Middleware and then
registered, and the RDF Store is updated with the related AAS Server information. After the AAS
of the holonic agent has been loaded, the configuration of the holonic agent is loaded and the
reference of the AAS is updated also in the RDF-Store, so that the holonic agent could be found
by other (holonic) agents in the MAS4AI framework. For each agent which will be spawned on
basis of the loaded configuration, an own AAS that is related to the agent type will be started in
the BaSyx-Middleware and the information of the AAS reference is then updated in the RDF
Store. The registration into the Registry component of the BaSyx-Middleware is necessary for
each spawned agent type inside of an holonic agent, if at least one agent is deployed in another
environment or MAS framework.

If another, already active, (holonic) agent in the MAS4AIl framework searches for the
capabilities of the already spawned agents, they can be found by requesting the RDF-Store, with
response of the related unique IDs of suitable agents AAS. The requesting agent then can get the
endpoint information of the hosted agent AAS from the BaSyx registry, by using the list of IDs
from the RDF-Store, to publish the request towards their related AAS.

The holonic agent thus gets events from the AAS, which should be dispatched and executed
inside the related MAS of the holonic agent, for example a (distributed) setup in Janus. The
general procedure is visualized in Figure 46.

If an asset is required for execution of the request, for example if the holonic agent is a
resource agent which interacts with a CPPM, or an Al agent which interacts with a planning or
machine learning algorithm, the holonic agent requests the RDF-Store to get the AAS IDs of
suitable assets. The holonic agent then deploys the request to the already spawned agents inside
of the holon with a related planning. The plan will then be scheduled with the required agents
and the agents then gets the corresponding endpoint information from the Registry component
of the BaSyx-Middleware for the required assets. If additional agents are necessary to fulfil a
request, then these agents could be spawned as described in the initial start sequence of the
holonic agent, leading to another agent setup.

Page | 52

Dissemination level: PU



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

dispatch Events || ¢ I
| H Request
Search for
suitable
assels «
Search Assels
il in Registry ' i
Mission i
Planning !
Request !
Asset Endpoint | }
CentroiComponent | ' Object : '
Access : Paramelrization |
H and Control |
» | }
Finished : Finished - Finished :
LT i i i i Response

Figure 46: MAS interaction model with framework elements for agent request event processing

In case of an CPPM, the resource agent will connect with a Janus skill towards the AAS of the
asset, which is representing a Control Component and can use information for parametrization
of this request. Furthermore, if the parametrization is part of stored information, for example in
a related knowledge base, it is possible that an agent can send a request to the RDF-Store to get
the necessary information. If the request towards an asset has been successfully communicated
by using its AAS and the related action has been processed, then the response will be considered
by the related agent. If all agents of the holonic agent have processed their related part of the
scheduled plan successfully, the holonic agent communicates a response to the agent which have
started the request.

In case of failure during the execution of a previous setup planning, for example if an error
occurs on the asset side, an holonic agent can try initiate an alternative behaviour. Therefore, an
agent type which is responsible for deviations, must be available and feasible to react to the
occurred failure. If no possibility can be found to solve the problem inside the holonic setup, the
requesting agent must be informed.

22 Sequence-Diagram (Draw-lI0 Model from Appendix — Part 2)

Page | 53

Dissemination level: PU



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

8 Conclusion

The setup of the MAS4Al framework, which is based on several elements, has been described
in the scope of this document with a general approach. The setup of selected framework
elements has been presented with Janus as MAS and the message-based middleware solutions
of BaSyx and Apache Kafka. The virtual representation and interface description of the
manufacturing environment with AAS is important for the agent types inside the MAS and their
interface setup, to enable an interaction between resource agents and Cyber-Physical Production
Modules and to implement Industrial Al software agents. The setup of Kafka thus enabled the
integration of message channels for distributed agents.

The setup to provide an AAS as self-description and interface for assets, with related
components and services for registration and discovery, thus could also be used and validated as
approach for the setup of an Agent Service Description, so that the components of the Data /
AAS layer of the MAS4AIl framework can be used as same basis. The interaction of MAS4AI
framework elements during an initial start sequence of an holonic agent as well as the
interactions and communication for executing a request has been modelled, as well as the
importance of a knowledge base, for example in form of an RDF-Store. Due to the possibility to
integrate semantic references inside an AAS, it is possible to connect to an RDF-Store or to send
requests to the knowledge base. With the RDF-Store, it is also possible to search for suitable
agents and assets, due to the functionality of the Registry component, which focuses more of the
endpoint information of all registered AAS.

The encapsulation of agent interfaces to communicate with the AAS, the RDF-Store, with
Kafka APIs or in general with available microservices could be setup and modelled by using the
skill concept of the Janus MAS. The modelling and implementation of this concept allows the
setup and integration of exchangeable communication patterns, which can be used inside an
agent’s behaviour, and allows in general to integrate already separated functionalities without
the need to change the implemented agents or their behaviour. The concepts thus allow an
integration of different technological implementations, if they can implement the described and
modelled aspects of the framework, using the concepts of the AAS as main interface.

In further deployments of the presented setup, the described MAS4AIl framework elements
can be provided as own Docker containers. The distributed setup of the framework can be seen
on the framework level, so that MAS4AIl framework elements are deployed in own docker
containers on cloud- or edge-level, but also in the possibility to deploy the framework elements
itself also in a distributed way. Examples for this can be seen, if many different MAS with agents
are deployed for a factory environment, or AAS Server and Registry or the knowledge base is
distributed.

Page | 54

Dissemination level: PU



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

To realize a setup such a distributed realization of the MAS4AI framework, the importance
of interface descriptions with the AAS and the usage of Apache Kafka as communication channel
can be seen. Furthermore, usage and evaluation of the skill concept for agents, that encapsulates
the interaction with other system elements, will be considered on the proposed MAS4AI setup.
This concept also includes the possibility to integrate further connectors as microservices, for
example for cloud level Al applications and interface concepts of distributed production, like IDS
connectors.

Page | 55

Dissemination level: PU



O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204
9 Literature

[1] Janus Agent and Holonic Platform (2022). Available: http://www.sarl.io/runtime/janus/,
Accessed: 2022-04-13.

[2] Download Options and Installation Instructions (2022). Available:
http://www.sarl.io/download/index.html, Accessed: 2022-04-13.

[3] OpenJDK (2022). Available: https://adoptium.net/?variant=openjdk8&jvmVariant=hotspot,
Accessed: 2022-04-13.

[4] Janus Command-line Launcher (2022). Available:
http://www.sarl.io//docs/official/tools/Janus.html, Accessed: 2022-04-13.

[5] Maven Plugin for the SARL Compiler (2022). Available:
http://www.sarl.io//docs/official/tools/MavenSarIPlugin.html, Accessed: 2022-04-13.

[6] Create your First Project (2022). Available:
http://www.sarl.io//docs/official/gettingstarted/CreateFirstProject.html, Accessed: 2022-04-
13.

[7] Create a SARL Launch Configuration (2022). Available:
http://www.sarl.io//docs/official/gettingstarted/RunSARLAgentEclipse.html#1-create-a-sarl-
launch-configuration, Accessed: 2022-04-13.

[8] Rodriguez, Sebastian, Nicolas Gaud, and Stéphane Galland. "SARL: a general-purpose agent-
oriented programming language." 2014 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT). Vol. 3. IEEE, 2014.

[9] SARL Language Concepts (2022). Available:
https://en.wikipedia.org/wiki/SARL_language#/media/File:SARLLanguageconcepts.png,
Accessed: 2022-04-13.

[10] BaSyx explained in 10 minutes (2022). Available:
https://wiki.eclipse.org/BaSyx_/ WhatlsBasyx, Accessed: 2022-04-13.

[11] BaSyx Concepts (2022). Available: https://wiki.eclipse.org/BaSyx_/_Concepts, Accessed:
2022-04-13.

Page | 56

Dissemination level: PU


https://wiki.eclipse.org/BaSyx_/_WhatIsBasyx

O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

[12] Downloading BaSyx (2022). Available: https://wiki.eclipse.org/BaSyx_/ Download,
Accessed: 2022-04-13.

[13] How to build the BaSyx Java SDK (2022). Available:
https://wiki.eclipse.org/BaSyx_/ Download _/ Java_Setup, Accessed: 2022-04-13.

[14] AAS Server Component (2022). Available:
https://wiki.eclipse.org/BaSyx_/ Documentation_/ Components_/ AAS_Server, Accessed:
2022-04-13.

[15] Registry Component (2022). Available:
https://wiki.eclipse.org/BaSyx_/ Documentation_/ Components_/ Registry, Accessed: 2022-
04-13.

[16] Components - Updater Component (2022). Available:
https://wiki.eclipse.org/BaSyx_/ Documentation_/ Components#Updater _Component,
Accessed: 2022-04-13.

[17] AASX Package Explorer (2022). Available: https://github.com/admin-shell-io/aasx-package-
explorer, Accessed: 2022-04-13.

[18] CanvAAS — bridging a fragmented industry landscape (2022). Available:
https://www.eitmanufacturing.eu/what-we-do/eit-manufacturing-case-studies/case-study-
canvaas-bridging-a-fragmented-industry-landscape/, Accessed: 2022-04-13.

[19] Components - SQL (2022). Available:
https://wiki.eclipse.org/BaSyx_/ Documentation_/ Components_/ SQL, Accessed: 2022-04-
13.

[20] Kafka Communication Provider (2022). Available: https://github.com/BaSys-
PC1/platform/blob/master/runtime/de.dfki.cos.basys.runtime.communication.provider.kafka/s
rc/main/java/de/dfki/cos/basys/platform/runtime/communication/provider/KafkaCommunicat
ionProvider.java, Accessed: 2022-04-13.

[21] Exploring the Apache Kafka “Castle” Part A: Architecture and Semantics (2022). Available:
https://www.instaclustr.com/blog/exploring-apache-kafka-castle-architecture-semantics/,
Accessed: 2022-04-13.

[22] Kafka QuickStart (2022). Available: https://kafka.apache.org/documentation/#quickstart,
Accessed: 2022-04-13.

[23] Shapira, Gwen, et al. Kafka: the definitive guide. " O'Reilly Media, Inc.", 2021.

Page | 57

Dissemination level: PU


https://wiki.eclipse.org/BaSyx_/_Documentation_/_Components_/_SQL
https://www.instaclustr.com/blog/exploring-apache-kafka-castle-architecture-semantics/

O;" D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

[24] Docker Development Kafka Readme (2022). Available: https://github.com/marcel-
dempers/docker-development-youtube-series/blob/master/messaging/kafka/README.md,
Accessed: 2022-04-13.

[25] Welcome to Apache Avro! (2022). Available: https://avro.apache.org/, Accessed: 2022-04-
13.

[26] BaSys 4.0 control and group components (2022). Available:
https://wiki.eclipse.org/BaSyx_/_Documentation_/_ControlComponent, Accessed: 2022-04-13.

[27] Getting started — What is Dydra? (2022). Available: http://docs.dydra.com/dydra,
Accessed: 2022-04-13.

Page | 58

Dissemination level: PU



OE- D2.1 — User Manuals on Accessing and Using the MAS
H2020 Contract No. 957204

10 Appendix

Janus Booting and generic event Sequence

[ ] [om ] [ ] o ) o= ] =

= |

ibrun e B Sl Troth 1
_—  r—ee——————8

.d -
[ o mach
- i Paap=rne

: it ol i)
Doty :
e o I3 Lt i

] -
= | 5 | |
- | e |
s MZ"______wi______*é

Figure 47: MAS4AI Elements interaction diagram 2

2 Sequence-Diagram (Draw-10 Model)

Page | 59

Dissemination level: PU



