

 Page | 1
Dissemination level: …

D4.2 - Development of the planning agent

Dissemination level: PU

Date: 2022-04-15

Deliverable leader: LMS

Contributors: TECNALIA, AIMEN, US, VW, SCM, BV, VDL, FERSA, FLEXIS, SIS

Reviewers: DFKI

Type: DEM

WP / Task responsible: T4.2

Keywords: Implementation Technologies, Planning Agent, Deviation Agent,
Multi-Agent System, Heuristic Optimization, Optimization
Toolbox

Grant Agreement Number: 957204 (H2020-ICT-38-2020)

Project Acronym: MAS4AI

Project Start Date: 1st October 2020

Project Full Title: Multi-Agent Systems for Pervasive Artificial Intelligence for assisting

Humans in Modular Production

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 2
Dissemination level: CO

Executive Summary
The main purpose of this document is to:

• Describe the development activities that followed the design and modelling phase in Task 4.1

• Describe the implementation technologies that were used

• Demonstrate the results for the planning agent

The main technologies/ practices that were identified are:

• artificial intelligence algorithms for planning and scheduling

• multi-agent system

• cloud technologies

Enablers towards the achievement of the MAS4AI objectives involve the following:

• development of meta-agent module for planning

• development of deviation agent

• development of planning/ scheduling methods included within the optimization toolbox

Further information is provided in the following:

Section 1: An introduction to the motivation and objectives of the task and deliverable 4.2.

Section 2: The description of the developments of the planning agents.

Section 3: The description of the developments of the deviation agent.

Section 4: The description of the Prototypical system deployment.

Section 5: The conclusion, sum up all the outcomes.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 3
Dissemination level: CO

Document History

Version Date Contributors Description

V0.0 04/02/22 LMS Outline

V0.1 15/02/22 TECNALIA, AIMEN, US, VW, SCM,
BV, VDL, FERSA, FLEXIS, SIS

Revised Outline

V1.0 01/03/22 LMS Sections 1, 2.1, 3.1

V1.1 04/03/22 FLEXIS Section 2.2.1

V1.2 16/03/22 AIMEN Section 2.2.3

V2.0 20/03/22 TECNALIA, AIMEN, US, VW, SCM,
BV, VDL, FERSA, FLEXIS, SIS

Full Draft v1

V2.1 24/03/22 AIMEN Content updates and figures

V2.2 01/04/22 FLEXIS Content updates and figures

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 4
Dissemination level: CO

V2.3 05/04/22 LMS Update demo description
and figures

V3.0 08/04/22 LMS Full Draft v2

V4.0 14/04/22 DFKI, LMS Internal Review &
Submission Version

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 5
Dissemination level: CO

Table of Contents
Executive Summary ... 2

Table of Figures ... 6

Table of Tables .. 8

1 Introduction ... 9

1.1 Motivation ... 9

1.2 Work package objectives ... 9

1.3 Deliverable requirements .. 9

2 Planning Agent ... 10

2.1 Planning Meta-Agent Development ... 10

2.2 Development of Heuristic-based Scheduling Toolbox .. 12

2.2.1 Centralized Scheduling Solution by FLEXIS ... 12

2.2.2 Hierarchical Scheduler by LMS ... 13

2.2.3 Orchestration Solution by AIMEN ... 16

2.2.4 Discrete Conveyor Scheduling for Painting by LMS .. 23

2.2.5 Heuristics AGVs Scheduling for Assembly by LMS .. 27

2.2.6 Model-based AGVs Scheduling for Assembly by LMS .. 27

2.2.7 Integrated Resources and AGVs Schedule by LMS ... 30

2.2.8 Assembly Line Cycles Generation LMS ... 30

3 Deviation Agent ... 32

3.1 Deviation Agent Application Development .. 32

3.2 Implementation of Deviation Estimation Methodology ... 32

3.3 Deviation Reaction .. 37

4 Prototypical System Deployment .. 38

5 Conclusion ... 49

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 6
Dissemination level: CO

Table of Figures
FIGURE 1 LIST OF CLASSES CREATED WITHIN THE META-AGENT APPLICATION TO SERIALIZE/ DESERIALIZE AAS INFORMATION FOR PLANNING

 ... 10
FIGURE 2 SCREENSHOT FROM THE JAVA CLASSES CREATED TO SERIALIZE/ DESERIALIZE THE AAS META-MODEL PRESENTED IN D4.1......... 11
FIGURE 3 PLANNING AGENT INPUT INFORMATION PROVIDED TO THE PLANNING AGENT (EXCEL FILE) ... 12
FIGURE 4 SCREENSHOT FROM THE PLANNING SOFTWARE FRONT-END APPLICATION.. 13
FIGURE 5 HIERARCHICAL SCHEDULER: SEQUENCE OUTPUT .. 15
FIGURE 6 DATA FLOW ... 15
FIGURE 7. THREE MAIN BLOCKS OF THE DISTRIBUTED ALGORITHM. THE WHOLE PROCEDURE RELIES ON PRINCIPAL COMPONENT ANALYSIS,

PARTICLE SWARM OPTIMIZATION AND TOPOLOGICAL SORTING. ... 17
FIGURE 8. MAIN OUTCOME OF THE SOLUTION. WHILE CURRENT DECISIONS FOR SCHEDULING SHOWS ONLY THE KPIS BASED ESSENTIALLY ON

AVAILABILITY, THE NEW FUNCTIONALITY EVALUATES THE CONFIDENCE OF THESE VALUES (VALUE AFTER SLASH LINE) ATTENDING TO

MACHINE PARAMETERS THAT CAN BE TRACKED. MEANING A SUBSTANTIAL CAPITALIZATION OF HISTORICAL DATA TO IMPROVE

SCHEDULING TASKS. THE ADDON THAT WILL SHOW THE RESULTS (WINDOW DOWN IN THE FIGURE) WILL BE IMPLEMENTED IN QT AND

INTEGRATED WITHIN T4.3. ... 18
FIGURE 9. POSITIONS UPDATE IN THE SWARM. THE UPDATE DEPENDS ON PREVIOUS VALUES OF THE MATRIX AND THE DEFAULT VELOCITY

DEFINED IN THE ALGORITHM HERE REPRESENTED BY A PARAMETER BETA. .. 20
FIGURE 10. SWARM DYNAMICS. THE RED CIRCLE REPRESENTS THE ACCEPTANCE VOLUME DEFINED BY THE USER. THE PARTICLES MOVE UNTIL

ALL REMAIN INSIDE SUCH VOLUME DEFINED. FROM THAT POINT TRAJECTORIES ARE ANALYSED. ... 21
FIGURE 11. SYSTEM CONVERGENCE UNDER PSO APPLICATION. THE DISTANCE OF DIFFERENT PARTICLES OF THE SWARM WITH THE TARGET

VALUES FOR THE KEY PARAMETERS DECREASE AS THE ALGORITHM RUNS. FROM THE CROSSPOINT WITH THE ACCEPTANCE DISTANCE,

THE TRAJECTORIES ARE ANALYSED ... 22
FIGURE 12. VELOCITY UPDATE WITH BOTH COMPONENTS: SOCIAL AND COGNITIVE. ... 23
FIGURE 13. COMPARISON OF CPU TIME FOR THE DIFFERENT VERSIONS OF MIP MODEL ... 25
FIGURE 14 OPTIMIZATION ALGORITHM LOG ... 25
FIGURE 15 DESCRIPTION OF THE OUTPUT INFORMATION AFTER THE OPTIMIZATION IS COMPLETED .. 26
FIGURE 16 SCREENSHOT FROM THE OPTIMIZATION OUTPUT, DISPLAYING THE SETUP DELAY APPLIED BY THE MODEL 27
FIGURE 17 OPTIMIZATION PROCESS OF THE GA REPRESENTED AS FITNESS VERSUS GENETATIONS; THE NEGATIVE FITNESS IS CAUSED DUE TO

THE PENALTY APPLIED FOR BREAKING THE PROBLEM CONSTRAINS .. 28
FIGURE 18 PYTHON CONSOLE LOG SCREENSHOT FROM RUNNING THE GA .. 29
FIGURE 19 FUZZY LOGIC NON-LINEAR FUNCTION FOR PROVIDING THE POSITION OF THE VEHICLE IN PERCENTAGE 29
FIGURE 20 INPUT INFORMATION FOR THE PROPOSED SCHEDULING TOOL ... 31
FIGURE 21 OUTPUT FILE OF THE PROPOSED SCHEDULING TOOL .. 31
FIGURE 22 DEVIATION AGENT METHODS FOR DEVIATION CALCULATION ... 33
FIGURE 23 DEVIATION AGENT CONSOLE WINDOW LOG FOR CHECKING THE RELEASE DATA DEVIATION (VDL EXAMPLE) 34
FIGURE 24 DEVIATION AGENT CONSOLE WINDOW LOG FOR CHECKING THE START DATE DEVIATION (VDL EXAMPLE) 34
FIGURE 25 DEVIATION AGENT CONSOLE WINDOW LOG FOR CHECKING THE END DATE DEVIATION.. 35
FIGURE 26 DEVIATION AGENT CONSOLE WINDOW LOG FOR CHECKING DEVIATION IN PROCESSING TIMES .. 35
FIGURE 27 DEVIATION AGENT CONSOLE WINDOW LOG FOR CHECKING DEVIATION IN QUALITY .. 36
FIGURE 28 ARCHITECTURE OF THE DEVIATION AGENT AND THE INTERACTIONS WITH EXTERNAL MODULES ... 36
FIGURE 29 VALIDATION FRAMEWORK OF THE MAS IN A PROTOTYPICAL VERSION .. 38
FIGURE 30 CONSOLE LOG FROM MANUAL INSTANTIATION OF ERP CONNECTOR FOR THE BV CASE .. 39
FIGURE 31 CONSOLE LOG FROM MANUAL INSTANTIATION OF SQL (ERP) CONNECTOR FOR THE VW CASE ... 40

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 7
Dissemination level: CO

FIGURE 32 JSON FILE FOR THE PLANNING META-AGENT BEFORE IT IS ASSIGNED WITH A WORKLOAD ... 41
FIGURE 33 CONSOLE LOG FROM MANUAL INSTANTIATION OF THE PLANNING META-AGENT ... 41
FIGURE 34 LOCAL FILES UPDATE BY THE DEVELOPER ... 42
FIGURE 35 LOCAL JSON (AAS) FILES UPDATES BY THE ERP CONNECTOR .. 42
FIGURE 36 UPDATE PROVIDED BY THE DEVIATION AGENT ON THE PLANNING AGENT ... 42
FIGURE 37 PLANNING META-AGENT CONSOLE LOG FROM RESULTS RECEIVED BY THE SCHEDULING AGENT ... 43
FIGURE 38 SCREENSHOT FROM DES RUNNING IN PARALLEL WITH THE MAS AND PERFORMING THE OUTPUT DECISIONS OF THE PLANNING

AGENT (WEEK: 1, DAY: 1, TIME: 06:51) .. 44
FIGURE 39 SIMILAR FIGURE AFTER ONE DAY IN SIMULATION TIME (WEEK: 1, DAY: 2, TIME: 01:25)... 45
FIGURE 40 WEB APPLICATION FOR SHOPFLOOR VISUALIZATION OF PLANNING AGENT RESULTS; SCHEDULE INTERACTION TAB 46
FIGURE 41 TAB FOR INTERACTING WITH THE MAS DIRECTLY FROM THE SHOPFLOOR UI APPLICATION IN ORDER TO INSTANTIATE, UPDATE OR

KILL THE AGENTS ... 46
FIGURE 42 BASIC BUSINESS KPI PLOTS OF THE PREVIOUS DAYS .. 47
FIGURE 43 TAB FOR MANAGING EVENTS BEFORE SEMI-AUTOMATIC; GIVING THE FINAL COMMAND BEFORE THE ACTIONS ARE EXECUTED .. 47
FIGURE 44 FUNCTIONALITIES FOR MANAGING THE AGENTS’ AAS DESCRIPTION DIRECTLY FROM THE THE UI WEB APPLICATION 48

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 8
Dissemination level: CO

Table of Tables
TABLE 1 INPUT TABLE .. 14
TABLE 2 OUTPUT TABLE ... 16

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 9
Dissemination level: CO

1 Introduction
1.1 Motivation
This task focusses on the development and provide screenshots of the final prototypes of the

planning and deviation agents of MAS4AI project that will be able to carry out the assignment of

the production tasks and processes in the different resources. The motivation behind this

deliverable is to increase the company's overall economic benefit and without disrupting, or

keeping the disruption to minimum, the customers' deadlines by developing more accurate

agents for scheduling matching the user-defined criteria.

1.2 Work package objectives
The objectives of the T4.2 are the following:

• Development of mulit-criteria decision-making planning agents for each case individually,

by changing the modelling or defining a different agent for each scenario. In each case

(i.e., BV, VW, Fersa) the information extracted was different and that is why different

modelling was needed.

• Development of multi-criteria decision-making for the deviation agents for each case

individually, in order the agents to have the capability of re-scheduling in case of an urgent

action.

• Best solution is selected in order to match the user-defined criteria for each case.

The outcomes of T4.1 are:

• Development of the planning and deviation agents for each pilot case.

1.3 Deliverable requirements
This deliverable reports the outcome of the T4.2 of developing the planning and deviation agent

for the WP4.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 10
Dissemination level: CO

2 Planning Agent
2.1 Planning Meta-Agent Development
The planning meta-agent was totally developed in Java where a standalone application was built

that could be instantiated for multiple AAS descriptions. The AAS data model was encapsulated

in Java (shown in Figure 1 below) in order to parse information provided by the AASX files into

Java Objects that could be manipulated by the software. This data model was created as an

additional Java project shared among the different agents responsible for planning procedures

in order to enable easier model updates, when required. What is more the Java project that

included the data model was enforced with multiple filtering and data management

functionalities which were found useful when handling planning information between the

different scheduling tools available on the optimization toolbox.

Figure 1 List of classes created within the meta-agent application to serialize/ deserialize AAS information for
planning

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 11
Dissemination level: CO

Figure 2 Screenshot from the Java classes created to serialize/ deserialize the AAS meta-model presented in D4.1

Configuring the meta-agent planning application regarding the external connections and internal

functionalities was achieved through the AAS description proposed within D4.1. Afterwards, the

external information layer services of the meta-agent application retrieved the different AAS

description including planning information via the endpoints provided by the agent’s AAS. The

agent was firstly receiving the assignments (type of: order, job, task) and following AAS requests

would come based on the references provided within the assignments’ AAS i.e. factory

information. These data were parsed into Java objects which were then easier and faster to be

manipulated internally by the application.

The meta-agent as described in D4.1 was a middleware between optimization toolbox and the

outer world, however unlike the outer world systems (agents/ assets) where information

transactions were achieved in a standardized way, the optimization toolbox was not built to

follow these standards. Each optimization software (agent) within the toolbox was bringing its

own I/O requirements in manner of type and format of the given information. As a result the

need for a connector was necessary in all cases. Connectors for the individual tools could be

either embedded within the meta-agent application as services, or external software that could

be found by the meta-agent. These connectors were ad hoc implementation of receiving the AAS

meta-model either as JObjects or as JSON files and filtering the necessary planning information

as well as translating it into the corresponding input to the scheduling/ planning optimization

tool. The reversed process was also performed once the output had been produced.

As the meta-agent was developed by LMS the connectors corresponding to the planning solutiosn

that were also developed by LMS were encapsulated as services within the meta-agent Java

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 12
Dissemination level: CO

application. However, in optimization tools that were developed by other partners i.e., FLEXIS,

AIMEN the connectors were provided as external services.

2.2 Development of Heuristic-based Scheduling Toolbox
2.2.1 Centralized Scheduling Solution by FLEXIS

We implemented an agile development process utilizing Scrum methodology. The development

was split in two teams, one was implementing the heuristic and the optimization, the other team

was implementing the user interfaces and the workflow in the Centralized Planning System. The

links and interfaces between the different parts were implemented in a common manner with a

floating responsibility between the teams. Additional (weekly) meetings with all the members of

the teams and (biweekly) meetings of the team leaders synchronized the activities in the sprints.

For the implementation, Java (8 or higher) and Python (3 or higher) was used. These and other

technologies that are allowed for the implementation are represented in a flexis internal Tech

Radar.

All components and code fragments were continuously integrated and continuously deployed to

ensure a continuous growth in functionality and continuous testing of the partners in the use

cases. Target environment for internal testing was the flexis in house cloud environment.

Everything was tested automatically using the unit test framework and Selenium to validate user

interfaces.

Figure 3 Planning agent input information provided to the planning agent (Excel file)

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 13
Dissemination level: CO

The output application will be a Centralized Scheduling Solution with the ability to interface

data, the option to edit and to manually change data, with an integrated heuristic for detailed

scheduling, user interfaces and a system workflow for planning, different Gantt Charts with the

possibility of manual interaction (Drag & Drop) and the ability to export the planning data to

downstream applications. Finally the Centralized Scheduling Solution is implemented as a web-

application in a cloud.

Figure 4 Screenshot from the planning software front-end application

2.2.2 Hierarchical Scheduler by LMS
The Hierarchical scheduler developed by LMS and integrated at the cases of BV, Fersa, VDL and

VW. This scheduler focused on addressing the resource-task allocation problem, and is used as a

planning agent. Different modelling where required in each case individually. The motivation

behind the development for the Hierarchical Scheduler was to catch all the requirements and

criteria extracted from all the cases that the agent is applied. The agent is explained in the D4.1,

and in this document a demonstration of the input, output and the data flow of the agent is

presented. The agent developed using Java programming language.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 14
Dissemination level: CO

Table 1 Input table

Input info Description

List of Jobs All the Jobs to be scheduled

List of Tasks All the Tasks for each different Job

List of Resources All the Resources of a Factory

Quantity of each Job The number of times a Job has to be done

Start and Due date for each Job Date ranges

Start and Due date for each Task Date ranges

Shifts for each Resource Date ranges

Workloads Set of jobs

Set-up matrix for each Resource Different set-up matrices for each case

Precedence constrains Post and pre- condition of each task

Suitable resources Task to suitable resources

Objective The objective the agent has to achieve

Criteria The criteria that the scheduler has to follow

The input of the algorithm is in described in table 1 and the output of the algorithm in table 2.

Receiving data as an AAS file, the data parsed into the Hierarchical scheduler modelling. In details,

the data parsed into an XML file, where the XML file is the input of the scheduler. Then the

algorithm computes the schedule and as an output results a schedule (list of assignments), see

Figure 5 The output is given to the user as an XML file. Then the XML file is converted into a AAS

file. The flow that is described above can be visualised in figure 6.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 15
Dissemination level: CO

Figure 5 Hierarchical Scheduler: Sequence output

Figure 6 Data flow

The output of the agent is a list of assignments. Furthermore, each assignment is a resource-task

allocation in a specific datetime. The list of the assignment is given as an XML and then it converts

into a AASX file.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 16
Dissemination level: CO

Table 2 Output table

Output info Description

List of Task – Resource For each task, the processing time, the

datetime that the task be dispatched and

the resource.

The agent can be accessed via HTTP server or locally using a Java Virtual Machine.

Implementations that allow the user access the agent have been done, but without a user-

friendly UI. Scheduling UI applications will be a case-specific implementation for each task in

WP6 independantly.

2.2.3 Orchestration Solution by AIMEN
The solution developed to be integrated at the SCM Use Case consists in a distributed algorithm
that provides advanced capabilities for scheduling tasks analyzing machine parameters and
comparing them data from similar machines from the SCM ecosystem. Based on these machine
parameters the KPIs that are currently considered by SCM to provide information to users in
order to perform scheduling, will be from now enhanced with a parameter that provides
information about the optimality of machine parameters and its consequent risk of an impact om
its performance.
As has been described in D4.1, SCM provides information to customers about certain KPIs for
each machine within its MAESTRO CONNECT environment. The solution developed here uses a
list of machines and their associated KPIs to create a separate machine ecosystem. Furthermore,
the machine parameters for each machine are provided to the algorithm to be used by the
distributed algorithm. The main outcome of the developments are a set of confidence
parameters /risk factors associated to each machine
The solution provided relies on a distributed algorithm implemented using python. The three
main blocks of the algorithm consist of a principal component analysis (PCA) assessment, a
particle swarm optimization (PSO) procedure and a topological sorting (TS). PCA performs a
dimensional reduction from the machine parameters in order to structure the data to be used by
the swarm algorithm eliminating data that does not contribute or not critically to the machine
performance. PSO provides an assessment of the dynamics of machine parameters towards their
optimal values based on real data. With this, the procedure can provide an estimation about how
far the machine, using the current parameters, is from the optimal performance. Finally, TS
provides a suggestion for a sorting task considering not only the KPIs as is currently done, but
also the information encoded by the machine parameters that now is provided by the previous
step in the algorithm.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 17
Dissemination level: CO

For the developments done in python the scikit-learn1 library was used for some steps of the
code. Swarm optimization was fully implemented without additional libraries and for TS graphlib2
was used to perform separate tests. In addition, as the functionality described here has not yet
been implemented/integrated in the SCM tool, Qt3 has been considered from the beginning as
the tool to integrate all the functionalities to be linked later with the SCM existing tool (MAESTRO
CONNECT).

Figure 7. Three main blocks of the distributed algorithm. The whole procedure relies on

principal component analysis, Particle Swarm Optimization and Topological Sorting.

The main outcome of the developments will be an addon integrated in the digital machinery
ecosystem of SCM (Maestro Connect). From there, once a user launches the scheduling
functionality, all the machine parameters will be loaded to run the distributed algorithm and
provide confidence rates to the KPIs offered to the Maestro Connect users to promote the
optimal task scheduling. This way, such functionality will also capitalize the data of past events in
the historic data of machines of the same family.

1 https://scikit-learn.org/stable/
2 https://docs.python.org/3/library/graphlib.html
3 https://www.qt.io/qt-for-python

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 18
Dissemination level: CO

Figure 8. Main outcome of the solution. While current decisions for scheduling shows only
the KPIs based essentially on availability, the new functionality evaluates the confidence of
these values (value after slash line) attending to machine parameters that can be tracked.

Meaning a substantial capitalization of historical data to improve scheduling tasks. The
addon that will show the results (window down in the figure) will be implemented in Qt and

integrated within T4.3.

For the results presented in this deliverable only synthetic data has been used and will be made
accessible as described in the data management plan. The code explained here will me made
accessible in the corresponding repository indicated on the same document. While the data used
has been generated artificially, within T4.3 is planned to test the solution real data.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 19
Dissemination level: CO

In order to reduce the complexity of the problem, we address the definition of what we call key
machine parameters. These will be the parameters used in the later swarm optimization. PCA is
used to reduce the dimensions of the machine parameters data attending to their variability.
Meaning that if for instance the system is capturing 5 parameters from machine, using PCA our
solution will select the two that present higher variability to be considered as most critical
parameters. Once such reduction is done these two parameters for each machine will define the
swarm whose dynamics will be studied as follows.
For the development addressed a swarm of 150 elements was considered. Meaning that data
for parameters of 150 machines have been generated. These parameters have been arbitrarily
chosen, with randomized distributions. The swarm is initialized considering machine parameters
form historical values and from PCA only two are selected as Key ones which will represent the x
and y coordinates of each particle of the swarm. The swarm matrix consists on 7 columns
attending to coordinates and velocities as described in D4.1.
Once the swarm is initialized the key parameters start to oscillate driven by random fluctuations.
The target position is a known variable provided by the system, given that the user knows what
the calibration values for each machine key parameter are. The swarm oscillates until the
particles are within a certain region from the target position defined as an acceptance threshold
also defined by the user. From that point the system estimates, based on the trajectories
(inverse) of all the particles in the swarm, what is the probability of keeping the key parameters
inside the acceptance distance in certain amount of time. This way the algorithm provides at the
end a value which indicates such probability (which is conditioned by the time window defined
by the user). This probability will be the confidence rate that will be associated to the KPIs of the
machine.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 20
Dissemination level: CO

Figure 9. Positions update in the swarm. The update depends on previous values of the

matrix and the default velocity defined in the algorithm here represented by a parameter
beta.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 21
Dissemination level: CO

Figure 10. Swarm dynamics. The red circle represents the acceptance volume defined by the

user. The particles move until all remain inside such volume defined. From that point
trajectories are analysed.

The values of the distance between each particle of the swarm and the target Key parameters

decrease within the algorithm iteration as can be seen below. After convergence (all the particles

within the acceptance distance) all trajectories are considered to estimate the probability of the

machine under evaluation to leave the acceptance boundary.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 22
Dissemination level: CO

Figure 11. System convergence under PSO application. The distance of different particles of
the swarm with the target values for the key parameters decrease as the algorithm runs.

From the crosspoint with the acceptance distance, the trajectories are analysed

So far, the update of the velocity of the particles is done following the equations described in

D4.1. Such update considers the swarm matrix but also a set of learning parameters. By now the

learning rates have been defined as the same for both components (cognitive and social).

However, in the future it might be required to study the impact, and provide the functionality of

asymmetries in the social and cognitive components given that it might happen that for instance

certain machines tend to work under better conditions or are newer, meaning that the social

component influence can be enhanced.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 23
Dissemination level: CO

Figure 12. Velocity update with both components: Social and cognitive.

After PCA and PSO the system provides a reduced set of key machine parameters that potentially

present stronger influence in the task to be scheduled. In addition, historic information from

parameters on equivalent machines is exploited to provide a probability for the current machine

to keep its key parameters within an optimal value. So that the system has enhanced information

that can be shown to the user to perform task planning with higher quality information achieved

through data capitalization. In the last point of the distributed algorithm, the system performs a

sorting of the machines defined in the environment to perform a task. So far only the KPIs could

be used to perform this sorting. We also include the estimated confidence rate within a classic

topological sorting procedure that performs. Even though there are existing python libraries such

as toposort4 for this, the initial assessment has been developed in a customized way for simplicity

in the addition of conditional elements in the tasking.

In the next WP4 task, this functionality will be updated using real data coming from SCM Maestro

Connect. And more importantly, the tool will be deployed as an addon to be called or run in

parallel with Maestro Connect to provide information-based scheduling capabilities.

2.2.4 Discrete Conveyor Scheduling for Painting by LMS

In this scheduling tool there was implemented the mathematical model formulated in D4.1 using

Python programming language. The proposed mathematical model was a Mixed Integer

Programming (MIP) model, where a set of linear and non-linear expressions were provided along

with the objective function that needed to be optimized. Solving such a model required

4 https://pypi.org/project/toposort/

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 24
Dissemination level: CO

representation of the proposed parameters and expressions in a form that could be used by

optimization tools and meta-heuristic algorithms. The model could be represented by only linear

expressions which has given the opportunity for using existing high-quality optimization software

available for solving this kind of models. As such, at first the mathematical representation of the

model was performed in Python using Pyomo5 library which is a mathematical modelling

framework that provides interconnection with the majority of optimization solvers available

online. Furthermore, the model which was now restructured into Pyomo objects was passed into

solvers that can be found available online in order to set the decision variables. Within the

proposed application Gurobi6 optimizer was used which is one of the most efficient optimizers

for MIP problems.

Moving a layer deeper into developing a solution that could not only encapsulate the dynamics

of the system and provide good solutions but also handle big optimization problems into a

considerably low computational delay. There were formulated three different variations of the

model with different accuracy capabilities each.

Given the mathematical formulation there were developed three different model-based agent

variations to minimize the functions: (a) The non-linear version (MINLP) of the problem, applies

the non-linear inequality constrains to the model, providing a lower number of constrains (thus

lower memory utilization), yet a higher computational demand. (b) The linear version (MILP),

where only the linear constrains are utilized, improving the computational demand, through

increasing the requirements for RAM utilization. (c) In a simpler form of the linear version (2-

stages MILP), one constrains is removed from the model, running the optimization only for mixing

the items of order that acquire the same color. On a second stage, once the allocation of items

has been achieved, the optimization process is repeated, only this time it schedules the sequence

of the colors, as a function of minimizing the setup delay. This way the model manages to reduce

the solutions space and the constrains limitations. However, it lacks the flexibility that is required

to handle the weighted flowtime problem.

The validation of the agents was performed a workload size from 3 to 100 production orders

in order to test the model’s computational time. The resources that have been used to execute

the computation experiments consisted of a CPU: Intel(R) Core (TM) i7-10700 CPU @ 2.90GHz,

using 32 threads for parallel optimization, and a 32GB RAM capacity. Figure 13 presents the

results from these experiments in a logarithmic scale. This plot provides an indication of the

5 http://www.pyomo.org/
6 https://www.gurobi.com/products/gurobi-optimizer/

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 25
Dissemination level: CO

limitations for each model separately and highlight the need for data-driven approaches in real

industrial situations.

Figure 13. Comparison of CPU time for the different versions of MIP model

Figure 14 Optimization algorithm log

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 26
Dissemination level: CO

The results indicate that only the simplified MILP modelling version is capable of solving a full-

scale 3-days' workload in a considerably short response time. The drawback however if this

modelling technique is the incompetency in addressing weighted flowtime problem. In practice

this is a problem since for some items, placing too many in subsequent carriers could reflect into

some serious bottlenecks in the following production steps. The MILP and MINLP mathematical

models are able to address this characteristic however the requirements for computational

demand and resources utilization are much higher. The agents’ solution is an array of allocations

for each item/ order in each hanger.

Figure 15 Description of the output information after the optimization is completed

In the above figure, the scale of the problem can be displayed from the solution, where 𝑖𝑚𝑎𝑥 is

the types of different items involved in the problem, 𝑝𝑚𝑎𝑥 the number of different orders and

𝑡𝑚𝑎𝑥 the number of hangers (time-steps) required in order to allocate all the components.

Similarly, the figure bellow shows the exact sequence of allocations within the line, represented

by the priority column. Components with the same priority are hanged upon the same hanger

within the conveyor, while in cases where the continuity of the sequence is broken it indicated a

setup delay in time, and could also be identified by the different colours required for the later

components.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 27
Dissemination level: CO

Figure 16 Screenshot from the optimization output, displaying the setup delay applied by the model

2.2.5 Heuristics AGVs Scheduling for Assembly by LMS

The heuristics AGV scheduling tool is an alternative implementation of the algorithm developed

in section 2.2.2. In fact, the proposed heuristic algorithm is a resources allocation algorithm

suitable for any kind of problem that is represented as resource-task. The problem with the AGV

plan is that although AGV is a resource and a transportation is a task, the location of the AGV is

dynamic and the setup delay (indicating the time required for the AGV to reach the starting point

of the transportation is dynamic). This is handled by the modelling definition in D4.1 and was

developed on top of the existing heuristic algorithm presented in section 2.2.2.

Java programming language was utilized in order to build a JAR file that contained the proposed

algorithm and modelling classes. The I/ O was similar to that of 2.2.2, consisted of an XML file for

the input and another XML file for the output. Within this XML, AGVs were created as resources

and a transportation of an item from one location to another was modelled as a task. An AGV

could handle only one task at a time,

2.2.6 Model-based AGVs Scheduling for Assembly by LMS
This scheduling solution focused on addressing the AGV scheduling problem using a model-

based approach. In specific the AGV schedule could be fully represented in a mathematical way

using MIP and Fuzzy logic for the description of AGV positions along the factory grid. At the first

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 28
Dissemination level: CO

development phase, Pyomo library was used in order to formulate the problem in Python.

However, the proposed model was a non-linear MIP limiting the solvers that could address this

problem into a small portion of all the solvers available on the market. This was found not to be

a valuable solution and thus Genetic Algorithm was used instead in order to approximate the

problem’s solution. PyGAD library was used with built-in functions for implementing the GA in

any kind of optimization functions. It is important to mention that unlike constraint-

programming solutions, metaheuristics do not have a build-in capability for constrains. In order

to address this issue, the objective function was altered in order to give bad results (penalties)

when the problem constrains are broken. The following figure shows the optimization process

of the algorithm for a simple example, reaching 92.22% in 35 iterations for a population of 80

genes.

Figure 17 Optimization process of the GA represented as fitness versus genetations; the negative fitness is
caused due to the penalty applied for breaking the problem constrains

Before GA, PSO algorithm was used for the same problem however did not achieve the same

efficiency; despite the good efficiency of GA, it stills provides some latency in the results due to

the non-linearity of the model. Additional efforts will be put during the deployment phase of the

project in order to improve this model and provide lower response time and accuracy to this

problem. The output results were provided in the form of a binary decision variable including

several transportations that the AGV performed at a specific point in time (shown in figure

below).

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 29
Dissemination level: CO

Figure 18 Python console log screenshot from running the GA

These allocations could be also represented using Fuzzy logic regarding the locations of the AGVs.

The bellow graph shows this concept for a small portion of the problem (AGVs = {V1, V2}, Grid

Points = {P, S1, S2}).

Figure 19 Fuzzy logic non-linear function for providing the position of the vehicle in percentage

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 30
Dissemination level: CO

2.2.7 Integrated Resources and AGVs Schedule by LMS

This section is a intersection between sections 2.2.2 and 2.2.5. In both of these sections there is

a described a similar decision-making algorithm that is used in order to make allocations across

a big solution space. The algorithm was utilized in Java and modelled using XML files as I/ O. So,

in the utilization of the algorithm the only thing that is changed across different problems is the

way that the problem was modelled and the algorithm steps were updated. In the resources

allocation problem (section 2.2.2) physical resources were modelled as resources within the

algorithm while departments were modelled as workcenters in the algorithm’s entities

ecosystem. On the other hand, in section 2.2.5 in which the transportation problem was

addressed, vehicles were modelled as resources, and material were converted into

transportations based on the location that was needed to be delivered. In this way using the

same algorithm two different problems were addressed. However, these is the need to address

the integrated version of the problem simultaneously in order to avoid inconsistencies and

delivery delays, which will create a chain of following deviations.

This required a variation in the existing modelling methodologies by adding two different kinds

of resources describing the two types that are provided by the problem. Moreover, workcenters

ramined the same, describing the department while now there were mobile resources capable

of altering workcenters and assigned with tasks of kind transportation tasks.

The new standalone scheduling software was built as a JAR application capable receiving XML I/O

while also to be run internally by the meta-agent application. This made a difference in choosing

between local/ cloud-based optimization. In the local version, the JAR file was run through the

local computer (using a java compiler) and called directly from the meta-agent application. On

the cloud implementation version, an HTTP service was developed where the meta-agent

provided the input XML file and received the output XML file.

2.2.8 Assembly Line Cycles Generation LMS
The assembly line cycles generation is a simpler concept in comparison to the above decision-

making algorithms, yet can save valuable time for line managers that calculate these cycles

manually. The proposed algorithm presented in D4.1 was developed in Java as there was found

not need for any AI based technologies (in which Python would be more suitable). As such, the

algorithm received Excel files as input while provided also Excel files as outputs (shown in figure

below).

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 31
Dissemination level: CO

Figure 20 Input information for the proposed scheduling tool

Figure 21 Output file of the proposed scheduling tool

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 32
Dissemination level: CO

3 Deviation Agent
3.1 Deviation Agent Application Development
The deviation agent will help productions to quickly identify deviations and adapt. JAVA

programming language was utilized to develop a prototype application. The architecture of the

application and its interaction with external modules is shown in Fig 28. The deviation agent is

simpler than the planning agents, since its functionality will be used for identifying deviations in

processes, regarding start/end times, processing times, quantity etc. The user will input values

for creating the deviation agent input AAS file, as in the following example:

• ASSIGNMENTS: [Order1, Order2, ...]

• FUNCTION: deviation kind

• RULE: check rule for agent reaction

• VALUE: value for agent reaction

• ACTION: desired action

• AGENT: agent triggered

By inserting the “ASSIGNMENTS” list, the user can define the order ids he/she wants to be

checked for deviation. However, the deviation check “FUNCTION” should be also selected. The

user is able to select one or more from five function options: 1) check order for bill of material

status (release dates), 2) check order for deviation in start time, 3) check order for deviation in

end time, 4) check order for deviation in processing time and, 5) check order for deviation in

quantity. Additionally, the condition, “RULE”, “VALUE” and “AGENT” should also be defined. The

"RULE" is a value such as “higher than”, “equal to” etc. and the value could be a measurement in

any occasion (e.g. days). The “AGENT” is the agent that will perform the desired action (e.g., the

planning agent can perform reschedule). If the condition is fulfilled, the desired action should be

performed. However, one can use the deviation agent for highlighting the deviations of the

assignments without any reaction condition inserted. The information used by the deviation

agent to calculate deviation are included in the corresponding order AAS file, as described in

D4.1. Thus, as a first step, before calculating the deviation, order/job/task AAS properties should

be formed in an object. In section 3.2 and 3.3 the deviation agent core mechanism is described.

3.2 Implementation of Deviation Estimation Methodology
The deviation estimation methodology used by the deviation agent can be divided in two main

function categories: 1) estimate actual deviation and 2) predict future deviation. The estimation

of the actual deviation is basically structured in 5 functions, used for identifying the following

differences in order AASs properties:

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 33
Dissemination level: CO

• Difference between planned and actual release date

• Difference between planned and actual start date

• Difference between planned and actual end date

• Difference between planned and actual processing time

• Difference between planned and actual quantity

The release date of an order has been planned based on a bill of material. However, deviations

can be detected in the bill of material and the planned release date can also deviate. If the release

date shows deviation, then this deviation is passed to the processing time and planned start/end

date. These three deviations can be characterized as time deviations, since a planned time value

is compared to an actual one. To address and calculate these types of deviations, we created

three functions inside the deviation agent called “checkRelease”, “checkStart” and “checkEnd”,

to compare the planned and the actual dates. Nevertheless, since deviation can be identified in

processing time or in quantity produced, two more functions called “checkTime” and

“checkQuantity” were created. All functions return either a string value with the assignment if

deviation is detected or null. The user, by selecting the function of the deviation agent, triggers

the corresponding method.

Figure 22 DEVIATION AGENT METHODS FOR DEVIATION CALCULATION

For the last two methods, the process is simple: by comparing the entity values for planned and

actual processing time or quantity, the deviation can be calculated. If the planned or the actual

values are null , the deviation agent informs the user that deviation could not be calculated. In

any other case, the check is performed and deviation in processing time or quantity is calculated

and printed, to inform the user. After calculation, the condition that the user has declared in the

input deviation AAS is checked and the agent performs an action accordingly(“ACTION”).

For the first three methods, regarding the release, start and end dates, the methods should be

slightly changed, since the planned and actual values are not always included in the

corresponding order AAS file. Thus, a comparison between these dates and the current date

should be performed. When deviation is calculated, the condition check is performed. If the

condition is fulfilled, the proposed action should trigger the corresponding agent.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 34
Dissemination level: CO

When the deviation agent is used, the user should be able to immediately identify the deviations

in orders, regarding release date, start/end dates, processing time or quantity. For that reason,

deviation is always printed and entities are highlighted, to inform the user. Examples of deviation

agent outputs highlighting orders and their deviation are shown in Figs 23-27.

Figure 23 Deviation agent console window log for checking the release data deviation (VDL example)

Figure 24 Deviation agent console window log for checking the start date deviation (VDL example)

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 35
Dissemination level: CO

Figure 25 Deviation agent console window log for checking the end date deviation

Figure 26 Deviation agent console window log for checking deviation in processing times

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 36
Dissemination level: CO

Figure 27 Deviation agent console window log for checking deviation in quality

Figure 28 Architecture of the deviation agent and the interactions with external modules

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 37
Dissemination level: CO

3.3 Deviation Reaction
The deviation agent application can react to identified deviations, with respect to the input

information included in the deviation agent AAS file. Rather than the simple use for informing

the user of orders deviations, the agent is able to trigger other agents. If the condition formed by

the “RULE” and “VALUE” properties is fulfilled, the deviation agent can trigger the desired

"AGENT” to perform the “ACTION”.

Another issue that needs to be addressed is that deviation in an order can be identified even if

some order jobs have already begun or completed. Thus, there is a need to show the user the

remaining scheduled jobs, that are most likely to deviate. Having the ERP information about

orders, jobs and tasks in AAS format makes it easier for the deviation agent to identify which jobs

or tasks refer to the particular order and are affected from a previous deviation calculation. By

printing the affected jobs, the user will be able to investigate further deviations and react.

Lastly, we should mention that the deviation agent is responsible for updating some deviations

properties values either in the Bill of Material or Order AAS file , as described in D4.2. With this

process, the deviation calculation can be stored and used by another module if needed in the

future.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 38
Dissemination level: CO

4 Prototypical System Deployment
In order for the system to work following the MAS4AI overall architecture there are additional

missing integration efforts that are going to be provided during the T4.3 of this project.

Nevertheless, there is a need for some early testing regarding the algorithmic attributes of the

agents in order to identify the compliance to the industrial requirements. This deliverable is not

case-specific and despite the fact that some of the proposed scheduling algorithms (agents of the

toolbox) are utilized in multiple cases there was demonstrated in only one example case derived

from the pilot cases. The pipeline at which an early MAS interaction was achieved can be found

in the bellow architecture.

Figure 29 Validation framework of the MAS in a prototypical version

As it can be seen in this phase of implementation of the planning agent methodologies there was

not used the MAS4AI architecture (BaSyx/ DIMOFAC – AAS Platform, JADE/ JANUS - MAS

Framework) as there will be a follow up development phase in T4.3 that there will be focused on

deploying these technologies along with the AAS platform and the MAS system framework.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 39
Dissemination level: CO

In this architecture there was utilized a DES system as a digital version of the current production

environment, receiving feedback from the AAS instances (assets/ agents) while also giving back

feedback regarding the production status and events. The MAS was deployed as standalone Java

application (JAR) instantiated by the user, along with a specific AAS description for the agent.

What is more, the interaction with a pseudo-dynamic version of the ERP system was also

deployed as Excel exports from the actual ERP system or SQL databases with similar

functionalities. Developer, that was testing the agent’s interaction provided the dynamic

behaviour of the ERP system, by creating, modifying or removing existing entities of the ERP

information.

The connector between the ERP and the AAS entities (i.e. Orders, Jobs, Tasks) uncluded this kind

of dynamic behaviour in order to update the AAS files when the developer had made a new event.

The connectors for the corresponding cases will be more excessively explained within WP6 where

the use-case specific deployments effort will be demonstrated. In this section there will be

presented an example of the different optimization tools (agents) provided by the toolbox in

section 4, whereas the functionalities of meta-agent and interconnectivity with external

modules.

In the figure bellow it is displayed the lifecycle of the ERP connector by means of initialization,

operation and shut-down. There is presented a specific ERP connector software created for BV

painting department for a small example concerning the preparation stage of the department.

Figure 30 Console log from manual instantiation of ERP connector for the BV case

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 40
Dissemination level: CO

The ERP connector is connected to a specific URI on the local PC, where multiple excel files were

present, exported from the actual ERP database of BV production. Similar concept was also

implemented for direct connection to the SQL schemas of the production ERP environment, for

receiving information regarding the planning assets. Such an example can be seen in figure bellow

which is taken for a VW implementation of an ERP connector.

Figure 31 Console log from manual instantiation of SQL (ERP) connector for the VW case

In addition the developed that tested the system was able to instantiate agent instances

(planning meta-agent, deviation agent) as standalone Java applications (JARs) with a

corresponding AAS description of the agent. Since in this phase of the project AAS platform is not

integrated to the functionalities of the agents, there were used individual JSON files as instances

of the proposed agents’ model in D4.1. Such a description for the planning agent is shown bellow.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 41
Dissemination level: CO

Figure 32 JSON file for the planning meta-agent before it is assigned with a workload

The initialization of the planning agent can be seen in the following figure based on the AAS that

was presented above. The agent has no current assignments and thus there is no current

decision-making action to take.

Figure 33 Console log from manual instantiation of the planning meta-agent

The developer instantiates a new Excel file (i.e. “ERP_data_format – Copy.xlsx”) and the ERP

connector passes the updates into the JSON files automatically. The deviation agents identifies

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 42
Dissemination level: CO

that new pending workload entities have appeared and triggers a scheduling action while also

updates the assignments properties of the planning agent AAS.

Figure 34 Local files update by the developer

Figure 35 Local JSON (AAS) files updates by the ERP Connector

Figure 36 Update provided by the deviation agent on the planning agent

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 43
Dissemination level: CO

After the assignments is updated within the planning agent’s JSON the meta-agent is triggered

and the pipeline described in section 4 is initialized. The agent has been tuned to use the

heuristics resources scheduling tool presented in section 2.2.2 that is a build-in local JAR file for

the planning meta-agent application. The application converts the AAS JObjects into entities for

the corresponding scheduling tool and sends/ receives the planning I/O results (as shown in the

figure bellow).

Figure 37 Planning meta-agent console log from results received by the scheduling agent

The planning meta-agent updates the AAS files of the corresponding assets (orders, jobs, tasks)

while other agents/ software can update their content based on the new allocations. A major

note to be added at this point is that the corresponding JSON files is not a one-by-one

implementation of the AAS meta-model discussed in D4.1. In specific although the conext of

information is the same the format/ template was not the same as the one that will be used in

the final version of the Planning Agent. This development update will be included to the T4.3 as

this is closely dependant on the AAS platform that will be utilized. As such, there was used this

format (representing exacltly the same kind of information as in the AAS description) in order to

provide the prototypical validation of the scheduling algorithms and interaction/ configuration

concepts for the agents. In the integration process of T4.3 the specific model of each AAS

platform will be utilized (as this is also not total correspondence with the AASX Package Explorer)

and the files will be updated, now receiving these information from the AAS platform endpoints.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 44
Dissemination level: CO

Furthermore, information was able to visualized while also test the system’s performance in

abnormal events through a digital version of the actual production system represented within a

DES. The DES which used a (Python based) API in order to be dynamically updated and managed

by external information such as the AAS files. The new updates are visualized within the DES and

the system operates over the new schedule until the deviation agent finds a new action

requiment.

Figure 38 Screenshot from DES running in parallel with the MAS and performing the output decisions of the
planning agent (Week: 1, Day: 1, Time: 06:51)

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 45
Dissemination level: CO

Figure 39 Similar figure after one day in simulation time (Week: 1, Day: 2, Time: 01:25)

In addition for the future implementation of this pipeline on the actual factory, a shopfloor UI

application is operating in parallel, receiving the same updated over the production assets. In this

case the manager is the key implementation actor that is able to decide over the implementation

of these updates while also provide real-time feedback over the status of these assets for the

deviation agent to function. This UI application is a web-based application linked with specific

AAS information receiving and updating the planning I/O over the AAS platform. The reason for

updating the I/O information for planning lays to the fact that not all production processes are

carried in an autonomous fashion and real-time feedback over the process status or process

control is not always available. As such, there is the need for an intermediate actor (line manager)

that will close the gap and provide real-time updates when required. The main features that were

identified for the application were:

• Schedule display with real-time status update

• Control window for managing the MAS running on the background

• Business KPIs diagrams

• Events management window

Due to the fact that these UI features are in majority case-spacific design requirements, the

corresponding web-applications and features will be addressed mostly in WP6.

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 46
Dissemination level: CO

Figure 40 Web application for shopfloor visualization of planning agent results; schedule interaction tab

Figure 41 Tab for interacting with the MAS directly from the shopfloor UI application in order to instantiate,
update or kill the agents

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 47
Dissemination level: CO

Figure 42 Basic business KPI plots of the previous days

Figure 43 Tab for managing events before semi-automatic; giving the final command before the actions are
executed

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 48
Dissemination level: CO

Figure 44 Functionalities for managing the agents’ AAS description directly from the the UI web application

D4.2 - Development of the planning agent

 H2020 Contract No. 957204

Page | 49
Dissemination level: CO

5 Conclusion
The outcomes of the deliverable 4.1 are used as an input to this deliverable for implementations

of the planning and deviation agents. This deliverable aims to report the outcome of the task

T4.2, i.e., implementations of the planning and deviation agents. In addition, the agents that have

been implemented are thoroughtly described in deliverable 4.1. The outcome of task 4.2 was the

implementation of the modules described in deliverable 4.1 using various technologies and

practices. A demonstration of these aspects was initially achieved by this report, which will be

followed by live demonstrations and videos in workshops and review meetings of upcoming

months. The upcoming activities in the workplan for these modules is the case-spacific

instantiation of these technologies in WP6, in parallel with the integration included in Task 4.3

which also involve concepts and outputs developed WP3 and WP2.

