

 Page | 1
Dissemination level: PU…

D6.1 – Smart Factory Testbed Setup – Initial Results

Dissemination level: PU

Date: 2022-03-31

Deliverable leader: DFKI

Contributors: DFKI

Reviewers: LMS

Type: R

WP / Task responsible: DFKI

Keywords: SmartFactoryKL, prototype, CPPM, Basyx, AAS

Grant Agreement Number: 957204 (H2020-ICT-38-2020)

Project Acronym: MAS4AI

Project Start Date: 1st October 2020

Project Full Title: Multi-Agent Systems for Pervasive Artificial Intelligence for assisting

Humans in Modular Production

Ref. Ares(2022)3031426 - 14/04/2022

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 2
Dissemination level: PU

Executive Summary
This document comprises the deliverable D6.1 that describes the initial results of the

prototypical setup on the Multi-Agent System based on the Janus SARL runtime as MAS and BaSyx

as a middleware for hosting AASs, in the Smart Factory testbed demonstrator. The goal is to

implement the architectural framework of MAS4AI in this testbed and to evaluate initial results,

which can be used in the work packages WP2 – WP5 of the project and for other use case

implementations in WP6 of the MAS4AI project.

At first, the scope and the hardware and software setup of the Smart Factory testbed

demonstrator is described and requirements and method for the prototypical implementation

are presented. The results of the iterative MAS4AI prototypical implementation, following the

proposed method, are shown and the results of each iteration are shown. At least, the technical

results of the prototypical implementation of the MAS4AI framework in the testbed environment

are described.

Document History

Version Date Contributors Description

V01 2022-01-18 DFKI Initial Version of the
document

V02 2022-03-10 DFKI Creation of all
sections and content

V03 2022-04-12 DFKI Final Version

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 3
Dissemination level: PU

Table of Contents
Executive Summary ... 2

Table of Figures ... 4

1 Introduction ... 5

2 Scope of Smart Factory testbed evaluation .. 6

2.1 Use Case Description .. 6

2.2 SmartFactory CPPM and Hardware Basis ... 9

2.3 SmartFactory Software Basis .. 19

2.4 Requirements Scope of first prototype .. 21

2.5 Method for Prototype Development .. 26

3 Iterative MAS4AI-Prototype Development ... 27

3.1 1st Iteration – Setup first AAS and connect one transport agent to its asset 27

3.2 2nd Iteration – Setup holonic resource agents for production module sequence 29

3.3 3rd Iteration – Setup assets with AAS and agents for process execution 30

3.4 4th Iteration – Integration of planning component and AAS also for agents 32

4 Smart Factory MAS4AI Implementation .. 35

4.1 AAS and Digital twin preparation ... 37

4.2 Pilot setup with integration of existing legacy systems ... 39

4.3 Execution and validation of the individual agents .. 40

4.4 Execution and validation with the whole MAS4AI system ... 47

4.5 Summarized results... 49

5 Conclusion and future research .. 51

6 Literature .. 52

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 4
Dissemination level: PU

Table of Figures
FIGURE 1: SMARTFACTORY PL4 DEMONSTRATOR WITH PRODUCT .. 6
FIGURE 2: SMART FACTORY KL – PROCESS STEPS OF THE PL4 DEMONSTRATOR .. 7
FIGURE 3: MODULE "STORAGEANDASSEMBLY" (PICTURE BY A. SELL) .. 9
FIGURE 4: MODULE "STORAGEANDASSEMBLY" (PICTURE BY A. SELL) .. 11
FIGURE 5: MODULE "QUALITY 1" (PICTURE BY A. SELL) .. 12
FIGURE 6: MODULE "DATA REFUEL" (PICTURE BY A. SELL) .. 14
FIGURE 7: MODULES "DATA REFUEL" AND "QUALITY 2" (PICTURE BY A. SELL) .. 16
FIGURE 8: MODULE "QUALITY 2" (PICTURE BY A. SELL) .. 17
FIGURE 9: SMARTFACTORY ARCHITECTURE .. 19
FIGURE 10: FIRST ITERATION PROTOTYPE .. 27
FIGURE 11: SECOND ITERATION PROTOTYPE... 29
FIGURE 12: SHUTTLE TRANSPORTATION OF SECOND ITERATION ... 30
FIGURE 13: THIRD ITERATION PROTOTYPE ... 31
FIGURE 14: SHUTTLE TRANSPORTATION OF PRODUCTION MODULES AAS OF THIRD ITERATION ... 32
FIGURE 15: FOURTH ITERATION PROTOTYPE .. 33
FIGURE 16: MAS4AI FRAMEWORK ... 35
FIGURE 17: MAS4AI HOLONIC SETUP ... 36
FIGURE 18: TECHNICAL OBJECTS OF BASYX MIDDLEWARE .. 37
FIGURE 19: BASYX-AAS EXAMPLE OF THE “CONTROL COMPONENT” SUBMODEL AS JSON FILE .. 38
FIGURE 20: PILOT SETUP WITH INTEGRATED LEGACY SYSTEMS AS HOLONS .. 39
FIGURE 21: STATIC HOLONIC AGENT IN THE PROTOTYPE SETUP .. 41
FIGURE 22: JANUS LAUNCH CONFIGURATION OF HOLONIC AGENT ... 42
FIGURE 23: TRANSPORT EVENTS IN SARL ... 42
FIGURE 24: EVENT LISTENER OF JANUS MESSAGE CHANNELS ... 43
FIGURE 25: EVENT-TRIGGER INSIDE OF JANUS AGENTS .. 43
FIGURE 26: INTERACTION EXAMPLE OF COMMUNICATION BETWEEN AND INSIDE JANUS AGENTS ... 44
FIGURE 27: AGENT BEHAVIOR AND SKILL IMPLEMENTATION IN JANUS WITH SARL .. 45
FIGURE 28: IMPLEMENTED ASSEMBLY SKILL FUNCTIONS INSIDE OF ASSEMBLY BEHAVIOR OF A JANUS AGENT 46
FIGURE 29: ASSEMBLY CAPACITY IN SARL ... 47
FIGURE 30: ASSEMBLY SKILL IN SARL .. 48
FIGURE 31: STATUS OF INTEGRATED AGENTS IN THE TESTBED ENVIRONMENT ... 49
FIGURE 32: UPCOMING ITERATION BUILT OF SMART FACTORY MAS4AI PROTOTYPE ... 51

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 5
Dissemination level: PU

1 Introduction

The main objective of the SmartFactory-KL Use Case follows the general objectives of WP6,

to prove and validate the MAS4AI approach in industrial test beds. The modular Industrie 4.0

testbed of the Technology Initiative SmartFactory KL provides the possibility to build up, test and

deploy the MAS approach combined with the prototypical development and implementation of

defined agents with their requirements from WP 1.

The SmartFactory KL testbed provides the basis for the first functional prototype which is

based on the MAS4AI architecture concept and consist of a modular production environment and

the integration of message-based middleware solutions like OPC UA or the BaSyx-Middleware.

The usage of several software components like discovery and registry services, which are

essential in the testbed architecture, as well as the agent development and their configuration

and execution is also considered in the context of the MAS deployment.

The development of the first prototypical MAS4AI implementation, which is documented in

this document, follows several iterations. With each iteration, new components and features

have been considered for interacting in the used MAS framework. The developments in the MAS

framework Janus SARL, which is applied to the Smart Factory testbed to meet the requirements

along predefined agent patterns, and the connection to physical hardware component for control

purpose are presented as results of the first prototypical implementation.

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 6
Dissemination level: PU

2 Scope of Smart Factory testbed evaluation

2.1 Use Case Description

The SmartFactory-KL production environment consist of several demonstrator testbeds, in

which the Production Level 4 (PL4) demonstrator of the DFKI has been developed and build up as

modular skill-based factory testbed for modern automation hardware and software, as well as

concepts.

The PL4 demonstrator as Cyber-Physical Production System (CPPS) consist of four Cyber-

Physical Production Modules (CPPM) which encapsulate their capabilities to execute a defined

production step with their own implemented skill interface. Each CPPM and the takeout place to

receive the manufactured product is linked to the central rail system, which transports the

workpiece carrier. The demonstrator environment is based on a service-oriented architecture [1]

and can reconfigure the setup of CPPM with the plug-and-produce capability.

Figure 1: SmartFactory PL4 demonstrator with product

The modular setup provides a basis for distributed deployment for control and data collection

in production environments with physical and virtual software assets, which should be integrated

in scope of MAS4AI system validation. In the PL4 demonstrator, the product to be manufactured

is modular as well and consist of several parts, which can be combined and ordered individually.

The SmartFactory PL4 demonstrator with product is shown in Figure 1.

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 7
Dissemination level: PU

The production process of the PL4 demonstrator to produce this product follows the

sequence as shown in table 1. The processed sequence of the corresponding CPPM of the PL4

demonstrator is also described with relation to the production step. The several CPPM of the

demonstrator, where each module is responsible to execute one step in the production process,

is shown in Figure 2.

Figure 2: Smart Factory KL – Process steps of the PL4 demonstrator

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 8
Dissemination level: PU

Process step Short Description

Step 1

Module 1: “StorageAndAssembly”

Get the workpiece carrier with a pick and place from the

current shuttle of the rail system into the production module.

Pick a nubstone (in the ordered color) from the storage

element and place (assemble) it on top of the base nubstone USB

stick and set it onto the workpiece carrier.

Set the workpiece carrier with a pick and place from the

current module back to the shuttle of the rail system.

Step 2 (optional)

Module 2: “Quality 1”

Image-based quality inspection of the assembled part. The

image of the quality check is stored and uploaded for the

following production module for data storage purpose.

Step 3

Module 3: “Data Refuel”

Data-flashing of ordered data and the picture of the quality

check module onto the nubstone USB.

Step 4

Module 4: “Quality 2”

Final Image-based quality inspection of the product.

Step 5

 “Takeout Place”

Module to get the final manufactured product out of the

production line.

Table 1: Process steps and related resources of the PL4 demonstrator

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 9
Dissemination level: PU

2.2 SmartFactory CPPM and Hardware Basis

In this chapter, the Cyber-Physical Production Modules with listed hardware assets, which are

also considered in the requirements document, are shown. Each CPPM is presented with an own

figure and the related table for each module describes the hardware related components, the

module consists of.

Module 1: “StorageAndAssembly”

Figure 3: Module "StorageAndAssembly" (Picture by A. Sell)

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 10
Dissemination level: PU

Type Name Manufacturer

Micro Controller Arduino Nano Arduino

Sensor (Camera) IS8401C-363-50 Cognex

Actor (Gripper) EHPS-16-A-LK Festo

Switch Ha-VIS eCon 3070GB-A-PP Harting

Switch Eagle 30 Industrial Security

Router

Hirschmann

Sensor (Camera) ISR-751 Keyence

Sensor (RFID Reader) IQT1-F61-IO-V1 Pepperl & Fuchs

Actor PSEN sl-1.0p 1.1 / PSEN sl-

1.0fm

PILZ

Sensor PSEN cs1.1p PILZ

Linear Axis Gripper Linear Axis Gripper

(summarized)

Rexroth

PLC SIMATIC ET 200SP Open

Controller, CPU

Siemens

PLC PRO MAX3 240W 24V 10A Weidmüller

Touchpanel PC SIMATIC IPC477E Siemens

Table 2: Hardware components of module 1

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 11
Dissemination level: PU

Figure 4: Module "StorageAndAssembly" (Picture by A. Sell)

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 12
Dissemination level: PU

Module 2: “Quality 1”

Figure 5: Module "Quality 1" (Picture by A. Sell)

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 13
Dissemination level: PU

Type Name Manufacturer

Micro Controller ArduinoNano Arduino

Touchpanel PC Panel PC 3100 Einbaugerät B&R

Sensor (Camera) acA1440-73gc Basler

Plug Smart Electrical Connector

(SmEC)

Harting

IPC HAIIC MICA ETH ES Harting

Interface Node PeriNet PeriNODE PeriNet / EATON

Actor PSEN sl-1.0p 1.1 / PSEN sl-

1.0fm

PILZ

Sensor PSEN cs1.1p PILZ

PLC SIMATIC ET 200SP Siemens

Switch IES101G2SFPW StarTech

Table 3: Hardware components of module 2

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 14
Dissemination level: PU

Module 3: “Data Refuel”

Figure 6: Module "Data Refuel" (Picture by A. Sell)

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 15
Dissemination level: PU

Type Name Manufacturer

Actor (Linear axis gripper) Linear axis system

(summarized)

Afag

Actor (Gripper) EHPS-16-A-LK Festo

Automation PC APC3100 B&R

Micro Controller Arduino Nano Arduino

Profinet Koppler X20 B&R

Plug System HAN-Modular-System Harting

Switch Eagle 30 Industrial Security

Router

Hirschmann

Controller Servo Drive C1100 LinMot

Sensor (RFID Reader) IQT1-F61-IO-V1 Pepperl & Fuchs

Actor PSEN sl-1.0p 1.1 PILZ

Sensor PSEN cs1.1p PILZ

PLC PNOZ m B1 PILZ

Touchpanel PC SIMATIC IPC477E Siemens

Table 4: Hardware components of module 3

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 16
Dissemination level: PU

Figure 7: Modules "Data Refuel" and "Quality 2" (Picture by A. Sell)

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 17
Dissemination level: PU

Module 4: “Quality 2”

Figure 8: Module "Quality 2" (Picture by A. Sell)

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 18
Dissemination level: PU

Type Name Manufacturer

Micro Controller Arduino Nano Arduino

Automation PC APC3100 B&R

Profinet Koppler X20 B&R

PLC X20 System B&R

Sensor (Camera) acA1440-73gc Basler

Switch Eagle 30 Industrial Security

Router

Hirschmann

IPC Atlas 500 Huawei

Actor PSEN sl-1.0p 1.1 / PSEN sl-

1.0fm

PILZ

Sensor PSEN cs1.1p PILZ

Touchpanel PC VR4215.1 Rexroth

Table 5: Hardware components of module 4

Furthermore, there are hardware assets, which are not related to the CPPM itself, for example

the transport system. These components are listed in Table 6.

Type Name Manufacturer

Edge Cloud Server OneCite GEC / Rittal

Conveyor system TracSet Montratec

Conveyor system (planned) ACOPOStrak B&R

Tablet Ipad Apple

Smart Glasses Hololens 2 Microsoft

Infrastructure Box Infrastrukturbox SmartFactory

ATV Robotino Festo

Manual assembly station HAP SmartFactory

Table 6: Other hardware components / assets

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 19
Dissemination level: PU

2.3 SmartFactory Software Basis

The SmartFactory-KL testbed environment consists of various architecture components and

communication protocols, that are described in this chapter. The overall architecture is shown in

Figure 9.

Figure 9: SmartFactory architecture

Each CPPM of the PL4 demonstrator (production units and transport units), which are related

to the edge level, consist of physical assets that are controlled by internal PLC that is connected

to corresponding actors and sensors. The capabilities of each CPPM are implemented with a skill-

based approach using OPC UA, that provides a uniform interface to control the CPPM and to get

data from it.

The architecture consists of the Plant-Service level of several software components for setup

of individual product design during creation of customer orders, the build-up of a recipe in the

production configuration in terms of a production plan for the demonstrator and the production

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 20
Dissemination level: PU

configuration for orchestration of the production process. Furthermore, an interface for smart

worker assistance is provided, to connect with HMI devices.

For data exchange of pictures takes from the quality check, that can be uploaded to the

product by using the “Data Refuel”-Module, an own FTP Server is available, which communicated

with the modules OPC UA interface. The integration components take care about registry and

discovery of CPPM skills (CPPM skill registry) and Plant services (Service registry) and provide

furthermore a trusted cloud integration gateway. The communication protocols, related to their

architecture components, are listed in the table below.

Protocol  Architecture Component 

OPC UA  Production Modules 

Production Flow Control 

HMI 

MQTT  Cloud Applications 

Enterprise Resource Planning System 

REST  Enterprise Resource Planning System 

Production Flow Control 

Production Design 

Production Configuration 

Registry (Skills and Topology) 

API Management 

Discovery 

Profibus  Production Modules 

Infrastructure Nodes 

FTP  Upload product pictures for quality control or for saving it on the

product 

Table 7: SmartFactory Architecture Protocols

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 21
Dissemination level: PU

The services with security mechanisms are presented in Table 8.

Cloud Services  Comm.-Protocol  Security 

IBM Cloud  IBM PSB  Authentication

Gaia X Connector  MQTT & IDS (HTTP) Authentication (Certificates)

Table 8: Clouds and Connectors

2.4 Requirements Scope of first prototype

Based on the modular service-oriented architecture of the SmartFactory KL testbed, the basis

for setup of corresponding Asset Administration Shells (AAS) and Digital Twins has been

prepared. To enable interoperable interfaces for the testbed assets, each CPPM can be

represented as I4.0-Component, that can be ensured by adding an AAS to it. The setup of AAS

furthermore enable an agent interaction with the physical hardware layer, or to software services

like planning software, and can be combined with knowledge representations for semantic

interoperability. The AAS can thus be built by using a related software framework like the BaSyx-

Middleware, or integrated in OPC UA directly, following the OPC UA companion specification for

AAS.

In scope of MAS4AI, the representation of the described physical and virtual components in

form of AAS or uniform interface descriptions is focused to ensure a connection, control and data

exchange between the system and a MAS framework in general. The steps to make the testbed

ready for an agent-control, adding semantic technologies and for further integration of planning

and machine learning agents are in the scope of the first prototypical implementation.

Related to the requirements of the MAS4AI approach, the aspects of planning, quality check

and human-machine interaction are essential in general. The scope of the current use case

planning, this means consideration of the availability of required serviced during production as

defined in the products recipe, thus should be enhanced to be able to react to changing situations

or target functions (e.g., time, costs, quality, sustainability). An improved flexible integration of

quality controls in combination with the agent’s behavior and data from assets can help to detect

weaknesses in the production process, which are leading for example to higher waste. Integration

of HMI agents can help to support operators in manufacturing environments and setup decisions

as part of a MAS system.

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 22
Dissemination level: PU

In the first iterations of the MAS4AI system setup and evaluation in the Smart Factory testbed

environment, the focus was on initial build-up of components under consideration of the given

physical and virtual assets to be integrated. The requirements for this setup, related to the agent

types in MAS4AI, that should be considered in these iterations are integrated mainly for resource

agents and infrastructure purpose.

To fulfil the MAS4AI objectives, a list of the foreseen agents that should be considered during

implementation and evaluated with their corresponding types is shown in Table 9. This list

contains agent types, based on collected requirements in WP1 and is considered also in the first

iterations of the Smart Factory testbed demonstrator evaluation.

Agent Type

Local planning agent Production planning

Resource agent Resource

Production module agent Resource

Transport agent Resource

Quality inspection agent Quality inspection

Safety agent Safety

HMI agent HMI

Energy agent Resource

Infrastructure agent Information

Data collection agent Information

Product agent Product
Table 9: SmartFactory: overview of expected agents and their types

Related to several domains of the use case requirement analysis, the following scope has

been defined for the Smart Factory use case.

Agent name Description Domain

Local planning agent The local planning agent can perform job-

shop scheduling with a limited number of

machines and interaction with a global

planning service.

 Time, Flexibility

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 23
Dissemination level: PU

Quality Inspection

agent

The quality inspection agent able to perform a

classification of products based on defects

and a classification of defective products

based on the possibility of repair.

 Sustainability, Quality

Production module

agent

Production module agents have the possibility

to interact with corresponding assets on the

shop flow in the manner of resource agents.

 Time, Flexibility

HMI agent The HMI agent is an agent with interfaces to

data visualization and database services.

 Human Machine

Interaction

Table 10: Categorization of agents

Furthermore, transport agents have specific requirements, following aspects of safety, reliability,

energy management that have impact to their communication and information.

A list of expected physical interactions between agents and the process environment is also

presented in Table 11. For the proposed prototype development and evaluation, the

implementation of production module agents as well as transport agents are mainly in focus of

the setup.

Agent Input Output

Production module agent Raw material Processed material

Transport agent Transported good Transported good

Quality Inspection agent Product Product (+Quality assessment)

Energy agent Energy -
Table 11: SmartFactory: expected physical interactions between agents and their environment.

The list of special considerations for agents related with ethics or trustworthiness are

presented. Due to the focus of the first iterations prototype, the following aspects are not mainly

focused.

Agent Special Considerations

Safety agent Safety regulations

HMI agent Trustworthiness, Usability / accessibility

Data collection agent Ethics (privacy rights, legal…)

Product agent Reliability, Privacy, Trustworthiness
Table 12: SmartFactory: special considerations

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 24
Dissemination level: PU

Predefined agent communication, which is based on the identified agent types, is necessary to

setup the main interactions between several agent types with events and the related message

syntax and semantics, following the approach of standardized conversion. The deployment of

agents in the SmartFactory workflow, as it is expected to meet the requirements, together with

the corresponding links between agents that are expected to interact within the process, is

presented in Table 13.

Local planning agent  Task scheduling data. Process-related time

to fulfil production orders.

Other data needs to be assessed during the MAS4AI

project.

Quality Inspection agent  Picture and configuration criteria for

batch size 1 quality control. 

“Ground truth” Data of the correct product

configuration.

Production Module Agent  Sensor and Actor Data of

the corresponding Modules in OPC UA – with

properties and operations (as skill-based approach) 

Each current module states 

Skill-related time and energy data

and their sequences 

Data about current configuration 

HMI Agent Status of the production orders

Status of the production modules

Machine data

Database containing component documentation

Information about the current operator

Table 13 - Required Agent data

The overall interactions of these agents are visualized in Table 14, considering resource agents,

which are mainly in the scope of the first prototypical implementations, as well as the connection

and data exchange with other agent types.

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 25
Dissemination level: PU

Table 14: SmartFactory: agent-based workflow

The interactions of each agent types, following the given overall setup, is also listed in the table

below.

Agent Interaction mechanisms

Local planning agent

Local planning agents: Planned schedule
Product agents: type, processing step, location, deadlines
Production module agents: Skills, availability, key processing
indicators
Quality inspection agents: Defect products
Energy agents: Energy prices, adjust machine performance
Infrastructure agents

Resource agent (incl.
Production Module agent,
Transport agent, Quality

inspection)

HMI agent (to interact with humans)
Safety agent (safety assessment, human interaction)
Energy agent (collect energy needs, (optional) adjust
performance, (optional) alter state (standby, offline, etc.))
Data collection (collects data from resource agent)

Safety agent
HMI agent (show safety level, safety information, interaction
with / location of operators)
Data collection agent (sensors/actors, create protocols)

Energy agent
Product agent (fill lifecycle file)
Data collection agent (report energy consumption)

Table 15: SmartFactory: interactions between agents and associated requirements

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 26
Dissemination level: PU

2.5 Method for Prototype Development

The Smart Factory prototype development and evaluation for the MAS4AI framework follows

an iterative software prototyping approach, with goal of validation of the WP2, WP3, WP4 and

WP5 results of the given project. The setup of the MAS is therefore based on a MAS framework

in combination with a message-based middleware solution, like Apache Kafka and BaSyx, but also

considering industrial Internet-of-Thing’s web service technologies like HTTP, MQTT and OWL.

The prototyping therefore is considering the following aspects into the iteration’s

development and prototype evaluation:

a. Digital twin preparation and integration with the AI agents for early assessment,

b. pilot setup that involves integration of existing legacy systems,

c. execution and validation of the individual agents and

d. execution and validation with the whole MAS4AI system

During the prototype setup and implementation, the main requirements for the given context

are considered. This includes the consideration of protocols to let the agents communicate with

each other in the MAS framework environment, as well as the interaction with the shopfloor

environment. Therefore, the build-up of digital twins and AAS is necessary for further integration,

also for activities towards AI agents.

The development considers the integration of available legacy systems, as presented as

physical CPPM of the Smart Factors PL4 demonstrator. The software components on the factory

services and integration level, like Registry and Discovery, must also be considered in an iterative

method.

The setup of the agent is following the agent type definition which has been presented on

basis of the MAS4AI requirements analysis. For the first prototypical iterations, the integration

of the resource agents is focused. For following iterations, the prototypical implementation will

be enhanced with the agent types of the requirements list.

An implementation in the Smart Factory demonstrator does also consider the components

and approaches of the MAS4AI work package contents for demonstration and evaluation

purpose. This means, that during the software prototype setup, new components must be

integrated and evaluated into a given MAS prototype state. Therefore, the addition of new

components as well as interfaces, can be considered by using an iterative development method.

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 27
Dissemination level: PU

3 Iterative MAS4AI-Prototype Development

The MAS4AI prototype development for the PL4 Line followed several iterations to make the

assets of the demonstrator available for agent’s interconnection and communication. After

completing a defined iteration, the next build of the prototype has been focused.

3.1 1st Iteration – Setup first AAS and connect one transport agent to its

asset

In the first iteration, the considered assets of the demonstrator (at first only the transport

asset) have been analyzed and prepared towards build-up of AAS. Given predefined interfaces of

the assets which can also be parametrized, the middleware level and MAS level must be prepared

for setup of the AAS.

Figure 10: First iteration prototype

In case of the Smart Factory PL4 demonstrator, the interface on asset level comes with a skill

based OPC UA interface. As middleware solution, the BaSyx-Middleware has been used. For the

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 28
Dissemination level: PU

MAS-System the Janus SARL environment is used, setting up an initial agents’ configuration of

simulated production modules as resource agents, which are calling for transport system.

Furthermore, one transport agent has been prepared, also as resource agent, to consider the

simulated requests form the production modules and to control the shuttle asset respectively.

For the first prototype iteration, the focus was on connection and control of the transport

system, the PL4 line rail shuttle system. The goal was mainly to enable a general setup

configuration in the BaSyx-Middleware to build up an AAS for the shuttle asset and then to setup

the connection to its related OPC UA interface, by using the OPC UA adapter of BaSyx. The focus

on this first iteration was, to enable an asset control out of the selected MAS system.

Given the proposed MAS4AI framework approach, the middleware and MAS level does not

focus on predefined technologies or frameworks but have to offer the required functions which

are related to their level. This means, that other middleware solutions or software components

can be used, to setup a MAS-System or build up AAS and interconnection to the asset level. The

given approach of the first MAS4AI implementation in the Smart Factory testbed therefore

consider on open-source software frameworks, which comes with a suitable setup and functional

scope for the proposed use case requirements.

In the middleware level, the assets of the demonstrator are represented with own AAS and

submodel “Control Component”, that is used for the dispatch of AAS methods from a central or

decentral controller. The AAS of the considered assets are registered in the BaSyx-Registry and

the related endpoint information of the AAS is stored there already. The communication towards

the assets is done with a OPC UA adapter, which depends on an interface configuration for the

focused asset.

The AAS submodel contains properties and capabilities of the asset, like information about

their current state, based on available state machines. The capabilities are implemented on the

asset-level as related skills with the uniform OPC UA interface. If a request is sent to the AAS

submodel, the BaSyx-Middleware process the information towards the field device adapter,

which in this case is connected by using the OPC UA protocol. A predefined mapping-

configuration between AAS submodel elements (like properties and operations) to their asset

related OPC UA node is used in the adapter.

In the MAS system of Janus, one resource agent that represents the first production module,

one resource agent that is representing the transport system and one HMI agent has been

prepared. The request for transportation goes to the HMI agent, which refuses the given request

because he is not able to process it, and to the transportation agent. The transport agent

acknowledges the request, search the endpoint of the shuttle AAS inside of the BaSyx registry

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 29
Dissemination level: PU

and process the AAS method, resulting in a shuttle control towards the requested position of the

resource agent. After the request has been processed successfully, the information has been sent

back to the resource agent, which have sent the request.

3.2 2nd Iteration – Setup holonic resource agents for production module

sequence

The main goal of the second iteration was to enhance the control of the integrated transport

shuttle in the MAS system. Resource agents are setup for each production module asset, which

included the “Storage and Assembly” module, the “Quality 1” module, the “Data Refuel” module

and the “Quality 2” module. Each of these agents simulated their actions in a default production

process in the PL4 line. A PL4 demonstrator factory holon has been setup to let the given agents

of this prototype iteration spawn. Each simulated resource agent, that stands for a production

module, has the goal to send a request towards the shuttle agent, resulting in a related request

to the shuttle asset.

Figure 11: Second iteration prototype

The resource agents, as simulated production modules, are requesting the shuttle agent for

transport in a predefined process sequence of a PL4 line default process. The shuttle agent

considers the requesting resource agent, and the requester data is also sent to the shuttle assets

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 30
Dissemination level: PU

AAS. The adapter processes the information, resulting in a different parametrization which is sent

to the related skill interface (another shuttle gate that should be reached from the asset). In this

example, the resource agents are communicating with each other, to process in sequence. In the

given process, the shuttle was able to reach the position of each production module with agents,

leading to a full integration and request-related dynamic control of the transport agent with its

asset’s parametrization.

Figure 12: Shuttle Transportation of second iteration

3.3 3rd Iteration – Setup assets with AAS and agents for process execution

The main goal of the third iteration was to setup the AAS for all production module and to

integrate them in the BaSyx-Middleware. For each production module, the related resource

agent in the MAS system is setup and the related agent behavior is developed. In this step, the

first functional integration on the middleware layer has been used and adapted for each of the

production modules, which are now coming with at least equal or more complex capabilities (e.g.,

assembly or data refuel), compared with the transport system.

In this step, the first functional integration on the middleware layer with the transport shuttle

has been used and adapted to each of the production modules, which are coming with equal or

more complex capabilities (e.g., assembly or data refuel), which now must be represented as

resource agent behaviors and capabilities. Therefore, the behavior and capacity patterns of the

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 31
Dissemination level: PU

Janus framework could be adapted, to encapsulate and use the predefined behavior-specific

capacity functions with the related AAS communication.

An AAS with “Control Component” submodel thus has been setup for each production

module asset, which included the “Storage and Assembly” module, the “Quality 1” module, the

“Data Refuel” module and the “Quality 2” module. The OPC UA adapter in the BaSyx Middleware

has been prepared to use several configurations, to dispatch AAS events and data (like operations

call or property updates) with resource-related parametrization to the respective OPC UA node

of the intended asset.

Figure 13: Third iteration prototype

The agents in the MAS system are now able to process the sequence like in the prototype of

the second iteration but have now the possibility to control the production process with

production steps and transportations in the physical demonstrator environment.

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 32
Dissemination level: PU

Figure 14: Shuttle Transportation of Production Modules AAS of third iteration

3.4 4th Iteration – Integration of planning component and AAS also for

agents

The main goal of the fourth iteration was to integrate a component to let the resource agents

work on a predefined planning. The holonic agent for the PL4 line must be able to provide data

for planning purpose and to adapt production plans more flexible with current agents’ behavior.

Based on the results of the third iteration prototype, it is possible to process a full production

sequence in the demonstrator, but due to the predefined sequence of this iteration, the agent’s

communication follows also predefined patterns.

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 33
Dissemination level: PU

Figure 15: Fourth iteration prototype

With the adaption of a plan, it is possible to change the current production and

communication pattern more towards flexibility and reconfiguration of production units.

Furthermore, a more flexible reaction due unforeseen events can be provided, for example if one

production module has an error. Inside the factory holon, agents then can communicate and try

to solve the problem, searching for other resource agents which can fulfil the action of the

module that is not available anymore.

Related to the demonstrator setup, it is possible to schedule a plan for the PL4 demonstrator

holon, and instead of quality check of the module “Quality 1” and then “Quality 2” the quality

checks should be done twice by using the same quality module, for example if the quality of the

check could for a given product could only be done with one of these modules. Otherwise, in case

of error of one quality module, for example if “Quality 2” cannot be used, it is possible to adapt

the predefined plan and then search for alternative modules. In this case, an alternative option

would be module “Quality 1”, or also the HMI agent, if a worker is available and can do the quality

check manually.

The adaption of a production plan comes also with the requirement of integration of a local

planning agent. The integration needs the availability of AAS models for the current agent types

and the possibility to host them in the BaSyx-Middleware, as well to register them in the registry.

The starting and registration of holonic agents as well as their agent types furthermore requires

the integration of an RDF-Store because the lack of the BaSyx-Registry for AAS to store more

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 34
Dissemination level: PU

information than the endpoint information. This information is essential to search for suitable

AAS as well during the initial start of holonic agents as well as for reconfiguration purpose.

The prototypical implementation of the fourth iteration is described in this document for the

purpose reconfiguration and is currently in development and evaluation in the Smart Factory

testbed. This iteration focuses on reconfiguration and adaption to a plan, as well to build up this

reconfiguration due to the error of one of the quality modules. The integration of the RDF-Store

as well as planning and quality check agents also are a good possibility to evaluate the MAS4AI

WP3, WP4 and WP5 approaches. Results of this integration and further MAS4AI framework

evaluation will thus be considered in future research.

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 35
Dissemination level: PU

4 Smart Factory MAS4AI Implementation

The Smart Factory testbed implementation of the MAS4AI framework follows the proposed

setup and content of the work packages. The structure is presented in Figure 16.

Figure 16: MAS4AI Framework

Related to the main aspects, the Smart Factory testbed demonstrator focused on topics:

• Implementation and evaluation of the MAS4AI setup as proposed in WP2

• Create a holonic representation for the existing (legacy) PL4 Demonstrator
• Integration of message systems like Apache Kafka for external communication of agents

and communication or data collection of assets in a distributed environment
• Flexible integration at the AAS layer, for example by using BaSyx-Middleware or OPC-UA

usage for real-time purpose on station level (e.g., also combined approach)

• Integration of RDF-Store for AAS semantic annotation as well as for requests during the
start of the system

• HMI-Integration for system configuration and maintainer support

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 36
Dissemination level: PU

The holonic setup of the MAS4AI framework, as proposed in WP2, is presented in Figure 17.

A holonic agent represents an entity, that can be deployed in a distributed environment and

comes with an own AAS, in which the configuration and parametrization of underlying agent

types inside this holon can be stored. A holonic agent in this way can thus consist of an own MAS,

in which all related agents could be created and configured. An example of such an holon could

be the resource holon of the Smart Factory PL4 demonstrator line, consisting of several resource

agents that are controlling the production modules as well as the transport assets. Inside such a

holon, also other agent types could be deployed, like quality agents as well as (local) planning

agents for example.

Figure 17: MAS4AI Holonic Setup

The agent types are integrated as agent patterns, which are setup in common MAS

frameworks like Jade or Janus. Nevertheless, the concept of MAS4AI considers a framework-

independent approach, so that the agent types and their communication could be setup in similar

way also in other MAS.

The agent interaction language is used in the first prototypical implementations by using the

Janus agent communication mechanism. The approach to use framework-mechanisms is useable

if all agents of an holon are setup and active in a same runtime environment. If the (holonic)

agents are deployed on distributed hardware (e.g., if agents are deployed on machines or some

AI agents are deployed in several cloud environments), the connection to a central message

communication system like Apache Kafka is needed for data exchange and communication.

The interaction of agents with hardware or software components can be realized by using

the AAS, providing predefined interfaces by using for example the BaSyx-Middleware or OPC UA.

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 37
Dissemination level: PU

4.1 AAS and Digital twin preparation

Related to the MAS4AI holonic setup, the preparation and setup of AAS or digital twins is

necessary for the integration into the MAS4AI framework. This part of the framework is

represented in the “Data / AAS Layer” and is necessary to build up a virtual representation of the

manufacturing environment. In the use case of the Smart Factory PL4 line, this also considers

physical as well as virtual assets.

The physical assets, in form of CPPM, are integrated and represented as AAS into the BaSyx-

Middleware. Therefore, the setup of several elements in the BaSyx-Middleware has been done,

which should be considered here. The implementation of the AAS has been done with the BaSyx-

Middleware. The related software elements of the middleware which are used for integration

and representation of an asset with the AAS are presented in the Figure 18. For the AAS

preparation, the BaSyx-Middleware [2] in Java is used with version 1.02.

Figure 18: Technical objects of BaSyx Middleware

The process of processing events, which are sent to the AAS, and data which can be got from

the system, is described from a top-down view, introducing the used components with their role

in the prototype.

If an agent of the MAS-System, for example a resource agent needs to find an AAS of an asset,

they will investigate the BaSyx Registry to get the related endpoint. If an AAS is found, then the

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 38
Dissemination level: PU

agent can perform a HTTP Rest-Call towards the AAS with corresponding parameters. Parameters

could be the agent ID, for example to lock the asset access for the given agent and to avoid that

another agent can interact with this asset for control purpose. In case of the shuttle AAS, the

information about the destination of the shuttle request must be set.

The assets AAS with the submodel “Control Component” is stored in the registry [3] and is

hosted by using a BaSyx AAS Server [4]. The integration and processing of events inside the BaSyx-

Middleware can be performed by using the “Control Component” pattern [5], or by needs of data

acquisition from shop floor devices, also with a “Device Integration” object which provides the

connectivity with the required protocol of the asset [6].

Figure 19: BaSyx-AAS example of the “Control Component” submodel as JSON file 1

To collect data from the shopfloor level, data update programs can be setup in BaSyx to

collect data on the AAS level or to get data directly from a virtualized related object (e.g., from

1 Asset Administration Shell JSON-Serialization in Web-Browser

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 39
Dissemination level: PU

“Control Component” or “Device Integration” object). The AAS and the objects in BaSyx are

working with the concept of the virtual automation bus (VAB) [7], so that collected data in this

bus can be used to update AAS but also to store this data into several databases, using the BaSyx-

Connectors.

The connection towards the shop floor device can be done with a “Control Component” or

also “Device Integration” object in the runtime. Therefore, an adapter like OPC UA must be

integrated into these objects, to process events and to get data from the asset. In this place, the

integration of a mapping or configuration file was very helpful for the flexible integration of the

Smart Factory prototype, so that events towards the AAS submodel can be translated into the

related OPC UA node and to transform given parameters into the suitable OPC UA parameter set.

4.2 Pilot setup with integration of existing legacy systems

The prototypical implementation needs to consider the integration of legacy systems of the

Smart Factory testbed environment. Related to the holonic approach of MAS4AI, legacy systems

are categorized into a holonic level.

Figure 20: Pilot setup with integrated legacy systems as holons

At enterprise level, several software components should be considered for integration. These

consist of ERP system, the global planning component, the product configuration for setup of

suitable recipes for product orders, the material handling, and the production flow unit, which

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 40
Dissemination level: PU

has the possibility to orchestrate the PL4 demonstrator environment. These services should be

integrated under a common factory holon, interacting with related agent types.

On the level of production lines, a holon could be setup for the PL4 demonstrator holon which

controls the production modules of this resource holon as well as the shuttle transport system.

This holon already considered the integration of these legacy systems with the proposed iterative

prototyping approach. Another holon for further testbed validations is currently setup and comes

with a reconfigurable production module setup and shuttle-based transport system integration.

These components should also be integrated in the MAS4AI evaluation of the Smart Factory

testbed environment.

The legacy assets itself, represented with PLC devices, should be integrated by using middleware

solutions like BaSyx.

4.3 Execution and validation of the individual agents

The implementation results of the first Smart Factory demonstrator example focus on the

setup of the MAS system by using the MAS framework Janus which is based on the agent-oriented

programming language SARL [8] and the Data / AAS layer of the BaSyx-Middleware. As presented

in the prototypical development in the previous chapter, the iterative integrated components

based on the MAS4AI framework setup as proposed in WP2.

Static holon Pattern for static holons, of the MAS4AI approach. The static holon takes
care about initial setup and spawning of related agents.

This object represents the structure for all lower-level static holons and
manage the lifecycle of all related agents inside. The static holon thus can
start a lifecycle for agent types, for example new resource agents.

Agent-Types Resource-Agents like agents for production modules as well as for transport
assets are considered. These agents can connect to the assets AAS and
perform actions and read data from the asset.

An HMI agent has also been considered for maintenance purpose, but not
implemented with an HMI interface.

Table 16: Implemented agent patterns inside the prototype

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 41
Dissemination level: PU

In Janus, a holonic agent is setup to perform all related resource agents for the Smart Factory use

case. In this case, the HMI-agent, and the resource agents and transport agent spawns with a

unique identifier.

Figure 21: Static holonic agent in the prototype setup 2

The start of the holonic agent can be done by using the Run configuration setting of the Janus

Framework [9], which enables the start by using Janus tools and the default Java command line.

2 SARL IDE (Project Setup and Holonic Agent)

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 42
Dissemination level: PU

Figure 22: Janus Launch Configuration of holonic agent 3

Each agent in this context can setup his own behavior and integrate capabilities and skills of the

Janus framework. Each of these objects can be defined as own Janus object. The communication

between agents can be processed by using the internal Janus message system with predefined

events [10].

Figure 23: Transport events in SARL 4

An event can consist of internal syntax and of variables and objects. Events can be sent inside

an agent, for example to start internal behavior, but can also be used to communication with

3 SARL IDE (Janus Launch Configuration)
4 SARL IDE (Transport events)

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 43
Dissemination level: PU

other agents, if they have joined a predefined message channel [10]. In case of distributed

MAS4AI agent deployment, the command line for subscription to internal message channels

must be replaced with a callback to an integrated external messaging system, like Apache Kafka.

Figure 24: Event listener of Janus message channels 5

An agent furthermore has the possibility to react to events in the scope of the agent definition

or inside of active behaviors. Inside the Janus framework, these sorts of events are also needed,

if an external messaging system should be used.

Figure 25: Event-Trigger inside of Janus agents 6

The communication between agents and inside of an agent object is presented in the Figure

26, showing a communication of several agents, that have been started inside an holonic agent.

5 SARL IDE (Event listener)
6 SARL IDE (Event-Trigger inside of agents)

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 44
Dissemination level: PU

Figure 26: Interaction Example of communication between and inside Janus agents 7

After spawning the related agents, their initial behavior is started and related skills, for

example for assembly, are initialized. The request for transport can be performed from a resource

agent, for example from the assembly agent, towards the transport agent.

Agents can be modelled by using capacities with skills [8]. The resource agent for the “Storage

and Assembly” production module consists of an assembly behavior that implements an

assembly skill and a skill for pick and place to get the product from the shuttle transporter inside

the module. The precondition which must be met, before the skill is executed, is to call the

transport, resulting in an own behavior trigger inside the agent.

7 SARL IDE (Console-Log as interaction example for agent communication)

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 45
Dissemination level: PU

Figure 27: Agent behavior and skill implementation in Janus with SARL 8

The implementation of a skill can be done inside an agent object and be used inside a

behavior [11], to execute several commands of this skill in a sequenced manner. For example,

the execution of the assembly skill with the shuttle system to get the workpiece carrier for the

product must always follow a predefined process. In Figure 28, the assembly skill of the resource

agent for the assembly production module is presented.

8 SARL IDE (SARL Objects for agent behavior and skills)

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 46
Dissemination level: PU

Figure 28: Implemented assembly skill functions inside of assembly behavior of a Janus agent 9

It is possible to submit several parametrizations for the call of the related skills. Furthermore,

for agents which interact with assets that are represented with an AAS, it is necessary to build up

command messages, for example in JSON, which are sent to the AAS methods as parameters.

The commands are executed towards the assets AAS by using the JSON, which can be prepared

individually. The communication pattern inside the skill is customizable and changeable, so it is

possible to keep a predefined skill sequence inside of an agent’s behavior and to change the skill

implementation with a modified or a completely new object, without changing the basic agent

communication or behavior pattern in the source code in a general way. This allows individual

development and customization, without many changes of basic objects like agents or behaviors.

The AAS communication inside the skill objects is furthermore part of the MAS4AI framework

interface setup, as well as the integration of semantic requests, using an RDF-Store.

9 SARL IDE (Skill usage inside of agent behavior)

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 47
Dissemination level: PU

4.4 Execution and validation with the whole MAS4AI system

Related to the Smart Factory use case, the MAS4AI framework focused in the current state

on the integration between the MAS component and the AAS / Data component, which has been

built on implementations with the BaSyx-Middleware.

The main concept for interaction of the MAS component with other elements of the MAS4AI

framework can be seen in the concept of changeable capacities and skills, following the concept

in the Janus framework. The definition of capacities allows an abstract method definition, that

can be implemented from various skills in a different way. This allows the definition of software

patterns, which can be implemented from agents, without predefinition of the implementation

itself, which is integrated very often in an individual manner.

This concept can also be used for the integration with other MAS4AI components, like RDF-

Store or the integration of external message channels with Apache Kafka. This allows the setup

of various agent templates with a predefined behavior but encapsulates the concrete

technology-related interface implementation inside the skill. This approach enables a flexible

setup and possibilities for Use Case-specific customization in the MAS component of the MAS4AI

framework and can also be realized in other frameworks if this software pattern can be

implemented there. Another usage of this pattern can be evaluated in the Jade Framework, by

using the standard Java interface pattern, which build the basis of the Janus capacity [12], but

without domain-specific skill setup within agents.

Figure 29: Assembly capacity in SARL 10

10 SARL IDE (Capacity Example)

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 48
Dissemination level: PU

Inside of a skill, the given capacity can be extended with a corresponding implementation. The

skill can request the AAS registry of the BaSyx-Middleware to get the related asset and to connect

to the AAS submodel, processing a prebuild JSON-command to AAS methods.

Figure 30: Assembly Skill in SARL 11

The communication related part of the MAS framework thus can be built of reusable

communication patterns for several protocols, for example to interact with a AAS with a REST-

interface or directly by using OPC UA. For further integration of an RDF-Store or Apache Kafka, it

is also possible to provide suitable connectors inside a skill.

11 SARL IDE (Implemented Skill Example)

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 49
Dissemination level: PU

4.5 Summarized results

For the prototypical implementation of the Smart Factory testbed environment with the PL4

line and the MAS4AI framework evaluation, the methodical approach for the iterative

development provided the possibility to reach the defined development goals of each iteration.

Thereby, the system setup and evaluation of the overall framework setup, consisting of MAS4AI

framework components like the MAS-System itself, as well as the AAS / Data layer as

representation of the manufacturing environment could be enhanced with new functionalities.

The status of implemented agent types in the testbed environment, related to the described

requirements, are presented in Table 31.

Agent Input Output Status

Production module
agent

Raw material Processed material
Successful
integration

Transport agent Transported good Transported good
Successful
integration

Quality Inspection
agent

Product
Product (+Quality

assessment)
In Progress

(AAS prepared)

Energy agent Energy -
In Progress

(AAS prepared)
Figure 31: Status of integrated agents in the testbed environment

The preparation of AAS with uniform interfaces to interact with the manufacturing

environment has been evaluated as essential for integration and communication with the MAS

component of the proposed MAS4AI framework. The interaction itself has been successfully

evaluated with AAS and Registry, which is built with the BaSyx-Middleware and hosted with REST-

Interface. A point which is very important for future integration is an event-based subscription

mechanism if agents execute tasks of assets, because of the asynchronous execution by using the

AAS it would be necessary to iterative load the AAS with its properties to get information about

successful or failure during the execution. Therefore, topics of Apache Kafka or MQTT could be

used.

Another important point of the current evaluation is the usability of agent patterns in the

MAS component for several agent types. The resource agent type has been adapted for several

agents of production modules as well as for the transportation asset. The holonic agent controls

the lifecycle of all related agent types. The skill approach enables the possibility of an abstract

integration in agent types and behaviors and is exchangeable, for example to support a

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 50
Dissemination level: PU

communication with an AAS with REST. The integration of AAS for holonic agents and their agent

types will be integrated as well as skills for communication with the RDF-Store, the integration of

message channel systems like Apache Kafka and HMI-Devices.

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 51
Dissemination level: PU

5 Conclusion and future research
The implementation of the MAS4AI prototype has shown, that the asset representation as

AAS is essential for MAS connection and interaction. The possibility to get data from assets and

to interact with them with predefined interfaces, enables a better integration for MAS-Systems.

Furthermore, the prototype showed, that the execution of a production flow with components

of the MAS4AI framework is possible. The iterative development method thus makes it possible

to build up the framework in a modular way and to enhance functionalities.

Figure 32: Upcoming iteration built of Smart Factory MAS4AI prototype

The upcoming development iterations will focus more on a distributed deployment of

MAS4AI components, by using Docker technology for each component. Therefore, predefined

interfaces with API can help to build up single components in a way, that they are independent

of the used solution, for example if another technology should be used than the BaSyx-

Middleware. In the next steps, the messaging system component and the knowledge base should

be integrated and the setup of the already used components more developed in terms of

customizable patterns. Furthermore, the integration of OPC UA in skills for direct AAS

communication from agents will be considered. The integration and evaluation of more agent

types, as described in the use case requirements, are also focused for upcoming prototyping. The

integration and usage of AI agents, for example for planning or machine learning, into the shown

prototypical implemented MAS4AI framework is also planned for upcoming development

iterations.

D6.1 – SmartFactory Testbed Setup – Initial Results

 H2020 Contract No. 957204

Page | 52
Dissemination level: PU

6 Literature
[1] Ruskowski, Martin, et al. "Production Bots für Production Level 4: Skill-basierte Systeme für

die Produktion der Zukunft." atp magazin 62.9 (2020): 62-71.

[2] Eclipse BaSyx™ (2022). Available: https://projects.eclipse.org/projects/technology.basyx,

Accessed: 2022-04-13.

[3] Registry Component (2022). Available:

https://wiki.eclipse.org/BaSyx_/_Documentation_/_Components_/_Registry, Accessed: 2022-

04-13.

[4] AAS Server Component (2022). Available:

https://wiki.eclipse.org/BaSyx_/_Documentation_/_Components_/_AAS_Server, Accessed:

2022-04-13.

[5] BaSys 4.0 control and group components (2022). Available:

https://wiki.eclipse.org/BaSyx_/_Documentation_/_ControlComponent, Accessed: 2022-04-13.

[6] BaSyx Device integration (2022). Available:

https://wiki.eclipse.org/BaSyx_Device_integration, Accessed: 2022-04-13.

[7] Virtual Automation Bus (2022). Available:

https://wiki.eclipse.org/BaSyx_/_Documentation_/_VAB, Accessed: 2022-04-13.

[8] Rodriguez, Sebastian, Nicolas Gaud, and Stéphane Galland. "SARL: a general-purpose agent-

oriented programming language." 2014 IEEE/WIC/ACM International Joint Conferences on Web

Intelligence (WI) and Intelligent Agent Technologies (IAT). Vol. 3. IEEE, 2014.

[9] Create a SARL Launch Configuration (2022). Available:

http://www.sarl.io//docs/official/gettingstarted/RunSARLAgentEclipse.html#1-create-a-sarl-

launch-configuration, Accessed: 2022-04-13.

[10] Event Reference (2022). Available: http://www.sarl.io//docs/official/reference/Event.html,

Accessed: 2022-04-13.

[11] Skill Reference (2022). Available: http://www.sarl.io//docs/official/reference/Skill.html,

Accessed: 2022-04-13.

[12] Capacity Reference (2022). http://www.sarl.io//docs/official/reference/Capacity.html,

Accessed: 2022-04-13.

